Nuprl Lemma : finite-union

S,T:Type.  (finite(S) ∧ finite(T) ⇐⇒ finite(S T))


Proof




Definitions occuring in Statement :  finite: finite(T) all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q union: left right universe: Type
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q finite: finite(T) exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top outl: outl(x) isl: isl(x) assert: b ifthenelse: if then else fi  bfalse: ff cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] mapfilter: mapfilter(f;P;L) no_repeats: no_repeats(T;l) subtype_rel: A ⊆B guard: {T} inject: Inj(A;B;f) btrue: tt true: True outr: outr(x) isr: isr(x)
Lemmas referenced :  finite_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf equipollent_wf int_seg_wf equipollent_functionality_wrt_equipollent2 equipollent_inversion equipollent-add union_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent-iff-list mapfilter_wf isl_wf assert_wf length_wf_nat length_wf no_repeats_wf equal_wf all_wf l_member_wf no_repeats_map filter_type set_wf no_repeats_filter equal_functionality_wrt_subtype_rel2 select_wf not_wf nat_wf less_than_wf top_wf filter_wf5 subtype_rel_list subtype_rel_union member-mapfilter assert_elim bfalse_wf btrue_neq_bfalse outl_wf isr_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin productEquality cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis unionEquality universeEquality dependent_pairFormation dependent_set_memberEquality addEquality setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll because_Cache independent_functionElimination setEquality equalityTransitivity equalitySymmetry isect_memberFormation applyEquality inlEquality addLevel levelHypothesis inrEquality

Latex:
\mforall{}S,T:Type.    (finite(S)  \mwedge{}  finite(T)  \mLeftarrow{}{}\mRightarrow{}  finite(S  +  T))



Date html generated: 2017_04_17-AM-09_34_03
Last ObjectModification: 2017_02_27-PM-05_34_31

Theory : equipollence!!cardinality!


Home Index