Nuprl Lemma : finite-union
∀S,T:Type.  (finite(S) ∧ finite(T) 
⇐⇒ finite(S + T))
Proof
Definitions occuring in Statement : 
finite: finite(T)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
finite: finite(T)
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
outl: outl(x)
, 
isl: isl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
mapfilter: mapfilter(f;P;L)
, 
no_repeats: no_repeats(T;l)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
inject: Inj(A;B;f)
, 
btrue: tt
, 
true: True
, 
outr: outr(x)
, 
isr: isr(x)
Lemmas referenced : 
finite_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
equipollent_wf, 
int_seg_wf, 
equipollent_functionality_wrt_equipollent2, 
equipollent_inversion, 
equipollent-add, 
union_functionality_wrt_equipollent, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
equipollent-iff-list, 
mapfilter_wf, 
isl_wf, 
assert_wf, 
length_wf_nat, 
length_wf, 
no_repeats_wf, 
equal_wf, 
all_wf, 
l_member_wf, 
no_repeats_map, 
filter_type, 
set_wf, 
no_repeats_filter, 
equal_functionality_wrt_subtype_rel2, 
select_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
top_wf, 
filter_wf5, 
subtype_rel_list, 
subtype_rel_union, 
member-mapfilter, 
assert_elim, 
bfalse_wf, 
btrue_neq_bfalse, 
outl_wf, 
isr_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
universeEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
because_Cache, 
independent_functionElimination, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
applyEquality, 
inlEquality, 
addLevel, 
levelHypothesis, 
inrEquality
Latex:
\mforall{}S,T:Type.    (finite(S)  \mwedge{}  finite(T)  \mLeftarrow{}{}\mRightarrow{}  finite(S  +  T))
Date html generated:
2017_04_17-AM-09_34_03
Last ObjectModification:
2017_02_27-PM-05_34_31
Theory : equipollence!!cardinality!
Home
Index