Nuprl Lemma : equipollent-iff-list

[T:Type]. ∀n:ℕ(T ~ ℕ⇐⇒ ∃L:T List. (no_repeats(T;L) ∧ (||L|| n ∈ ℤ) ∧ (∀x:T. (x ∈ L))))


Proof




Definitions occuring in Statement :  equipollent: B no_repeats: no_repeats(T;l) l_member: (x ∈ l) length: ||as|| list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: rev_implies:  Q nat: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x] biject: Bij(A;B;f) exists: x:A. B[x] equipollent: B top: Top cand: c∧ B subtype_rel: A ⊆B uimplies: supposing a guard: {T} sq_type: SQType(T) less_than: a < b le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} inject: Inj(A;B;f) surject: Surj(A;B;f) satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  not: ¬A false: False less_than': less_than'(a;b) l_member: (x ∈ l) pi1: fst(t) true: True squash: T no_repeats: no_repeats(T;l)
Lemmas referenced :  nat_wf l_member_wf all_wf length_wf equal_wf no_repeats_wf list_wf exists_wf int_seg_wf equipollent_wf equipollent_inversion length_upto map-length upto_wf map_wf set_wf subtype_rel_dep_function no_repeats_upto no_repeats_map int_subtype_base set_subtype_base subtype_base_sq lelt_wf member_map int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties int_seg_properties false_wf int_seg_subtype_nat member_upto select_wf less_than_wf int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le and_wf length_wf_nat non_neg_length biject_wf int_formula_prop_eq_lemma intformeq_wf le_wf iff_weakening_equal true_wf squash_wf decidable__equal_int_seg
Rules used in proof :  universeEquality because_Cache intEquality productEquality lambdaEquality sqequalRule hypothesis rename setElimination natural_numberEquality hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination independent_functionElimination voidEquality voidElimination isect_memberEquality applyEquality functionExtensionality dependent_pairFormation setEquality independent_isectElimination instantiate dependent_set_memberEquality dependent_functionElimination equalitySymmetry computeAll int_eqEquality unionElimination equalityTransitivity applyLambdaEquality hyp_replacement promote_hyp baseClosed imageMemberEquality imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}n:\mBbbN{}.  (T  \msim{}  \mBbbN{}n  \mLeftarrow{}{}\mRightarrow{}  \mexists{}L:T  List.  (no\_repeats(T;L)  \mwedge{}  (||L||  =  n)  \mwedge{}  (\mforall{}x:T.  (x  \mmember{}  L))))



Date html generated: 2018_05_21-PM-00_52_41
Last ObjectModification: 2017_12_07-PM-06_15_42

Theory : equipollence!!cardinality!


Home Index