Nuprl Lemma : equipollent_wf

[A,B:Type].  (A B ∈ Type)


Proof




Definitions occuring in Statement :  equipollent: B uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  equipollent: B uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop:
Lemmas referenced :  exists_wf biject_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesisEquality lambdaEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_59_41
Last ObjectModification: 2015_12_26-PM-07_44_39

Theory : equipollence!!cardinality!


Home Index