Nuprl Lemma : equipollent_wf
∀[A,B:Type].  (A ~ B ∈ Type)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
equipollent: A ~ B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
exists_wf, 
biject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:Type].    (A  \msim{}  B  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_59_41
Last ObjectModification:
2015_12_26-PM-07_44_39
Theory : equipollence!!cardinality!
Home
Index