Nuprl Lemma : union_functionality_wrt_equipollent
∀[A,B,C,D:Type].  (A ~ B ⇒ C ~ D ⇒ A + C ~ B + D)
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
prop: ℙ, 
biject: Bij(A;B;f), 
and: P ∧ Q, 
inject: Inj(A;B;f), 
surject: Surj(A;B;f), 
isl: isl(x), 
not: ¬A, 
false: False, 
guard: {T}, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
equipollent_wf, 
equal_wf, 
biject_wf, 
btrue_wf, 
bfalse_wf, 
and_wf, 
isl_wf, 
btrue_neq_bfalse, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_pairFormation, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqequalRule, 
inlEquality, 
applyEquality, 
inrEquality, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_set_memberEquality, 
setElimination, 
voidElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}[A,B,C,D:Type].    (A  \msim{}  B  {}\mRightarrow{}  C  \msim{}  D  {}\mRightarrow{}  A  +  C  \msim{}  B  +  D)
Date html generated:
2019_06_20-PM-02_16_52
Last ObjectModification:
2019_06_19-PM-06_19_59
Theory : equipollence!!cardinality!
Home
Index