Nuprl Lemma : equipollent_weakening_ext-eq
∀[A,B:Type].  A ~ B supposing A ≡ B
Proof
Definitions occuring in Statement : 
equipollent: A ~ B, 
ext-eq: A ≡ B, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
equipollent: A ~ B, 
exists: ∃x:A. B[x], 
biject: Bij(A;B;f), 
inject: Inj(A;B;f), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
prop: ℙ, 
surject: Surj(A;B;f)
Lemmas referenced : 
equal_functionality_wrt_subtype_rel2, 
equal_wf, 
biject_wf, 
ext-eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
independent_pairFormation, 
lambdaFormation, 
lemma_by_obid, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
universeEquality
Latex:
\mforall{}[A,B:Type].    A  \msim{}  B  supposing  A  \mequiv{}  B
Date html generated:
2016_05_14-PM-04_00_11
Last ObjectModification:
2015_12_26-PM-07_44_32
Theory : equipollence!!cardinality!
Home
Index