Nuprl Lemma : equipollent_weakening_ext-eq

[A,B:Type].  supposing A ≡ B


Proof




Definitions occuring in Statement :  equipollent: B ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B equipollent: B exists: x:A. B[x] biject: Bij(A;B;f) inject: Inj(A;B;f) all: x:A. B[x] implies:  Q guard: {T} prop: surject: Surj(A;B;f)
Lemmas referenced :  equal_functionality_wrt_subtype_rel2 equal_wf biject_wf ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis rename dependent_pairFormation lambdaEquality hypothesisEquality applyEquality independent_pairFormation lambdaFormation lemma_by_obid isectElimination equalityTransitivity equalitySymmetry independent_isectElimination independent_functionElimination universeEquality

Latex:
\mforall{}[A,B:Type].    A  \msim{}  B  supposing  A  \mequiv{}  B



Date html generated: 2016_05_14-PM-04_00_11
Last ObjectModification: 2015_12_26-PM-07_44_32

Theory : equipollence!!cardinality!


Home Index