Nuprl Lemma : finite-function

S:Type. ∀T:S ⟶ Type.  (finite(S)  (∀s:S. finite(T[s]))  finite(s:S ⟶ T[s]))


Proof




Definitions occuring in Statement :  finite: finite(T) so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q finite: finite(T) exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B pi1: fst(t) uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} equipollent: B compose: g biject: Bij(A;B;f) inject: Inj(A;B;f) surject: Surj(A;B;f) squash: T true: True inv_funs: InvFuns(A;B;f;g) tidentity: Id{T} identity: Id int_seg: {i..j-} sq_type: SQType(T)
Lemmas referenced :  all_wf finite_wf exists_wf nat_wf equipollent_wf int_seg_wf equal_wf function_functionality_wrt_equipollent equipollent_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent_inversion equipollent-product compose_wf int-prod_wf_nat int-prod_wf equipollent_functionality_wrt_equipollent2 biject_wf squash_wf true_wf iff_weakening_equal bij_imp_exists_inv subtype_base_sq set_subtype_base lelt_wf int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution sqequalRule productElimination thin cut hypothesis promote_hyp introduction extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality functionEquality universeEquality because_Cache natural_numberEquality setElimination rename dependent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination addLevel existsFunctionality independent_isectElimination independent_pairFormation applyLambdaEquality hyp_replacement imageElimination instantiate intEquality imageMemberEquality baseClosed

Latex:
\mforall{}S:Type.  \mforall{}T:S  {}\mrightarrow{}  Type.    (finite(S)  {}\mRightarrow{}  (\mforall{}s:S.  finite(T[s]))  {}\mRightarrow{}  finite(s:S  {}\mrightarrow{}  T[s]))



Date html generated: 2017_04_17-AM-09_33_56
Last ObjectModification: 2017_02_27-PM-05_33_08

Theory : equipollence!!cardinality!


Home Index