Nuprl Lemma : CCC-surjection

[A,B:Type].  ((∃f:A ⟶ B. Surj(A;B;f))  CCC(A)  CCC(B))


Proof




Definitions occuring in Statement :  contra-cc: CCC(T) surject: Surj(A;B;f) uall: [x:A]. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B surject: Surj(A;B;f) compose: g member: t ∈ T all: x:A. B[x] contra-cc: CCC(T) exists: x:A. B[x] implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  istype-universe surject_wf contra-cc_wf subtype_rel_self iff_weakening_equal nat_wf compose_wf istype-nat
Rules used in proof :  Error :inhabitedIsType,  universeEquality instantiate Error :productIsType,  independent_isectElimination equalityTransitivity equalitySymmetry Error :dependent_pairFormation_alt,  because_Cache Error :functionIsType,  isectElimination independent_functionElimination sqequalRule hypothesis extract_by_obid introduction cut Error :universeIsType,  hypothesisEquality applyEquality Error :lambdaEquality_alt,  dependent_functionElimination thin productElimination sqequalHypSubstitution Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A,B:Type].    ((\mexists{}f:A  {}\mrightarrow{}  B.  Surj(A;B;f))  {}\mRightarrow{}  CCC(A)  {}\mRightarrow{}  CCC(B))



Date html generated: 2019_06_20-PM-03_01_01
Last ObjectModification: 2019_06_12-PM-08_57_08

Theory : continuity


Home Index