Step * 1 of Lemma decidable-bar-rec_wf


1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. bar : ∀s:ℕ ⟶ ℕ(↓∃n:ℕB[n;s])
4. dec : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] ∨ B[n;s]))
5. base : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s])
6. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s])
⊢ decidable-bar-rec(dec;base;ind;0;seq-normalize(0;⊥)) ∈ Q[0;seq-normalize(0;⊥)]
BY
(Assert ⌜↓decidable-bar-rec(dec;base;ind;0;seq-normalize(0;⊥)) ∈ Q[0;seq-normalize(0;⊥)]⌝⋅ THENM Unsquash) }

1
.....assertion..... 
1. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
2. n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ
3. bar : ∀s:ℕ ⟶ ℕ(↓∃n:ℕB[n;s])
4. dec : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] ∨ B[n;s]))
5. base : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s])
6. ind : ∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s])
⊢ ↓decidable-bar-rec(dec;base;ind;0;seq-normalize(0;⊥)) ∈ Q[0;seq-normalize(0;⊥)]


Latex:


Latex:

1.  B  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
2.  Q  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}
3.  bar  :  \mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  B[n;s])
4.  dec  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  \mvee{}  (\mneg{}B[n;s]))
5.  base  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s])
6.  ind  :  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s])
\mvdash{}  decidable-bar-rec(dec;base;ind;0;seq-normalize(0;\mbot{}))  \mmember{}  Q[0;seq-normalize(0;\mbot{})]


By


Latex:
(Assert  \mkleeneopen{}\mdownarrow{}decidable-bar-rec(dec;base;ind;0;seq-normalize(0;\mbot{}))  \mmember{}  Q[0;seq-normalize(0;\mbot{})]\mkleeneclose{}\mcdot{}
THENM  Unsquash
)




Home Index