Nuprl Lemma : decidable-bar-rec_wf

[B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ]. ∀[bar:∀s:ℕ ⟶ ℕ(↓∃n:ℕB[n;s])]. ∀[dec:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] ∨ B[n;s]))].
[base:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s])]. ∀[ind:∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s])].
  (decidable-bar-rec(dec;base;ind;0;seq-normalize(0;⊥)) ∈ Q[0;seq-normalize(0;⊥)])


Proof




Definitions occuring in Statement :  decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s) seq-normalize: seq-normalize(n;s) seq-add: s.x@n int_seg: {i..j-} nat: bottom: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] not: ¬A squash: T implies:  Q or: P ∨ Q member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B and: P ∧ Q prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  so_apply: x[s1;s2] implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] squash: T int_seg: {i..j-} lelt: i ≤ j < k guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q decidable-bar-rec: decidable-bar-rec(dec;base;ind;n;s) seq-add: s.x@n
Lemmas referenced :  subtype_rel_self istype-false int_seg_subtype_nat subtype_rel_function squash_wf nat_wf seq-add_wf istype-le int_formula_prop_le_lemma int_formula_prop_and_lemma intformle_wf intformand_wf decidable__le int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_not_lemma istype-int itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int nat_properties int_seg_wf istype-nat seq-normalize_wf int_seg_properties equal_wf true_wf istype-universe seq-normalize-equal iff_weakening_equal not_wf
Rules used in proof :  universeEquality Error :lambdaFormation_alt,  productEquality Error :unionIsType,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  independent_pairFormation Error :dependent_set_memberEquality_alt,  voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination unionElimination addEquality dependent_functionElimination applyEquality because_Cache hypothesisEquality rename setElimination natural_numberEquality thin isectElimination Error :universeIsType,  extract_by_obid Error :functionIsType,  equalitySymmetry equalityTransitivity axiomEquality sqequalRule hypothesis sqequalHypSubstitution cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination SquashedBarInduction instantiate productElimination imageMemberEquality baseClosed Error :functionExtensionality_alt,  applyLambdaEquality intEquality functionExtensionality functionEquality unionEquality Error :equalityIstype

Latex:
\mforall{}[B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[bar:\mforall{}s:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (\mdownarrow{}\mexists{}n:\mBbbN{}.  B[n;s])].  \mforall{}[dec:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                                                                  (B[n;s]  \mvee{}  (\mneg{}B[n;s]))].
\mforall{}[base:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s])].  \mforall{}[ind:\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.
                                                                                                              ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s])].
    (decidable-bar-rec(dec;base;ind;0;seq-normalize(0;\mbot{}))  \mmember{}  Q[0;seq-normalize(0;\mbot{})])



Date html generated: 2019_06_20-PM-03_05_20
Last ObjectModification: 2019_01_09-PM-02_33_02

Theory : continuity


Home Index