Nuprl Lemma : seq-add_wf
∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[x:T].  (s.x@n ∈ ℕn + 1 ⟶ T)
Proof
Definitions occuring in Statement : 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtract: n - m
, 
less_than: a < b
Lemmas referenced : 
decidable__lt, 
false_wf, 
not-lt-2, 
not-equal-2, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
less-iff-le, 
condition-implies-le, 
add-associates, 
nat_wf, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
zero-add, 
le-add-cancel2, 
and_wf, 
le_wf, 
less_than_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
int_eqEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
lemma_by_obid, 
dependent_functionElimination, 
unionElimination, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isectElimination, 
addEquality, 
natural_numberEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[x:T].    (s.x@n  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  T)
Date html generated:
2016_05_13-PM-03_48_28
Last ObjectModification:
2015_12_26-AM-10_18_16
Theory : bar-induction
Home
Index