Nuprl Lemma : seq-add_wf

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T]. ∀[x:T].  (s.x@n ∈ ℕ1 ⟶ T)


Proof




Definitions occuring in Statement :  seq-add: s.x@n int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-add: s.x@n int_seg: {i..j-} nat: false: False implies:  Q not: ¬A lelt: i ≤ j < k and: P ∧ Q le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q prop: uiff: uiff(P;Q) uimplies: supposing a subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True subtract: m less_than: a < b
Lemmas referenced :  decidable__lt false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-swap add-commutes le-add-cancel less-iff-le condition-implies-le add-associates nat_wf minus-add minus-one-mul minus-one-mul-top zero-add le-add-cancel2 and_wf le_wf less_than_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality int_eqEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis applyEquality dependent_set_memberEquality productElimination independent_pairFormation lemma_by_obid dependent_functionElimination unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination isectElimination addEquality natural_numberEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[x:T].    (s.x@n  \mmember{}  \mBbbN{}n  +  1  {}\mrightarrow{}  T)



Date html generated: 2016_05_13-PM-03_48_28
Last ObjectModification: 2015_12_26-AM-10_18_16

Theory : bar-induction


Home Index