Nuprl Lemma : seq-normalize_wf
∀[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T].  (seq-normalize(n;s) ∈ ℕn ⟶ T)
Proof
Definitions occuring in Statement : 
seq-normalize: seq-normalize(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
seq-normalize: seq-normalize(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
lelt: i ≤ j < k
Lemmas referenced : 
less_than_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
because_Cache, 
hypothesis, 
lessCases, 
independent_pairFormation, 
isectElimination, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
hypothesisEquality, 
axiomSqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
extract_by_obid, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].    (seq-normalize(n;s)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  T)
Date html generated:
2019_06_20-AM-11_28_36
Last ObjectModification:
2018_08_20-PM-09_29_09
Theory : bar-induction
Home
Index