Nuprl Lemma : seq-normalize_wf

[T:Type]. ∀[n:ℕ]. ∀[s:ℕn ⟶ T].  (seq-normalize(n;s) ∈ ℕn ⟶ T)


Proof




Definitions occuring in Statement :  seq-normalize: seq-normalize(n;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T seq-normalize: seq-normalize(n;s) int_seg: {i..j-} nat: less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: lelt: i ≤ j < k
Lemmas referenced :  less_than_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality sqequalHypSubstitution setElimination thin rename because_Cache hypothesis lessCases independent_pairFormation isectElimination baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality hypothesisEquality axiomSqEquality isect_memberEquality voidElimination voidEquality lambdaFormation imageElimination productElimination extract_by_obid independent_functionElimination applyEquality functionExtensionality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[s:\mBbbN{}n  {}\mrightarrow{}  T].    (seq-normalize(n;s)  \mmember{}  \mBbbN{}n  {}\mrightarrow{}  T)



Date html generated: 2019_06_20-AM-11_28_36
Last ObjectModification: 2018_08_20-PM-09_29_09

Theory : bar-induction


Home Index