Step
*
1
1
of Lemma
decidable-finite-cantor
.....assertion.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. n : ℕ
5. F : (ℕn ⟶ 𝔹) ⟶ T
⊢ ∀d:ℕ. ∀s,t:𝔹 List.
(Dec(∃fg:ℕn ⟶ 𝔹 × (ℕn ⟶ 𝔹) [let f,g = fg
in (∀i:ℕn - d. f i = s[i]) ∧ (∀i:ℕn - d. g i = t[i]) ∧ R[F f;F g]])) supposing
((||t|| = (n - d) ∈ ℤ) and
(||s|| = (n - d) ∈ ℤ))
BY
{ TACTIC:(InductionOnNat THEN Auto) }
1
.....decidable?.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. n : ℕ
5. F : (ℕn ⟶ 𝔹) ⟶ T
6. s : 𝔹 List
7. t : 𝔹 List
8. ||s|| = (n - 0) ∈ ℤ
9. ||t|| = (n - 0) ∈ ℤ
⊢ Dec(∃fg:ℕn ⟶ 𝔹 × (ℕn ⟶ 𝔹) [let f,g = fg
in (∀i:ℕn - 0. f i = s[i]) ∧ (∀i:ℕn - 0. g i = t[i]) ∧ R[F f;F g]])
2
.....decidable?.....
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. Dec(R[x;y])
4. n : ℕ
5. F : (ℕn ⟶ 𝔹) ⟶ T
6. d : ℤ
7. [%2] : 0 < d
8. ∀s,t:𝔹 List.
(Dec(∃fg:ℕn ⟶ 𝔹 × (ℕn ⟶ 𝔹) [let f,g = fg
in (∀i:ℕn - d - 1. f i = s[i])
∧ (∀i:ℕn - d - 1. g i = t[i])
∧ R[F f;F g]])) supposing
((||t|| = (n - d - 1) ∈ ℤ) and
(||s|| = (n - d - 1) ∈ ℤ))
9. s : 𝔹 List
10. t : 𝔹 List
11. ||s|| = (n - d) ∈ ℤ
12. ||t|| = (n - d) ∈ ℤ
⊢ Dec(∃fg:ℕn ⟶ 𝔹 × (ℕn ⟶ 𝔹) [let f,g = fg
in (∀i:ℕn - d. f i = s[i]) ∧ (∀i:ℕn - d. g i = t[i]) ∧ R[F f;F g]])
Latex:
Latex:
.....assertion.....
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. \mforall{}x,y:T. Dec(R[x;y])
4. n : \mBbbN{}
5. F : (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} T
\mvdash{} \mforall{}d:\mBbbN{}. \mforall{}s,t:\mBbbB{} List.
(Dec(\mexists{}fg:\mBbbN{}n {}\mrightarrow{} \mBbbB{} \mtimes{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) [let f,g = fg
in (\mforall{}i:\mBbbN{}n - d. f i = s[i])
\mwedge{} (\mforall{}i:\mBbbN{}n - d. g i = t[i])
\mwedge{} R[F f;F g]])) supposing
((||t|| = (n - d)) and
(||s|| = (n - d)))
By
Latex:
TACTIC:(InductionOnNat THEN Auto)
Home
Index