Step
*
1
of Lemma
fan+weak-continuity-implies-uniform-continuity
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
⊢ ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ)))
BY
{ xxx(((InstLemma `strong-continuity2-implies-weak-skolem-cantor-nat` [⌜F⌝]⋅ THENA Auto) THEN (UnHalfSquash THENA Auto))
THEN D -1
THEN (InstLemma `strong-continuity2-implies-weak-skolem-cantor-nat` [⌜M⌝]⋅ THENA Auto)
THEN (UnHalfSquash THENA Auto)
THEN (UnHalfSquashConcl THENA Auto)
THEN D -1
THEN RenameVar `X' (-2))xxx }
1
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
2. M : (ℕ ⟶ 𝔹) ⟶ ℕ
3. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕM f ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ))
4. X : (ℕ ⟶ 𝔹) ⟶ ℕ
5. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕX f ⟶ 𝔹))
⇒ ((M f) = (M g) ∈ ℕ))
⊢ ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕn ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ))
Latex:
Latex:
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}
\mvdash{} \00D9(\mexists{}n:\mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g))))
By
Latex:
xxx(((InstLemma `strong-continuity2-implies-weak-skolem-cantor-nat` [\mkleeneopen{}F\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (UnHalfSquash THENA Auto)
)
THEN D -1
THEN (InstLemma `strong-continuity2-implies-weak-skolem-cantor-nat` [\mkleeneopen{}M\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (UnHalfSquash THENA Auto)
THEN (UnHalfSquashConcl THENA Auto)
THEN D -1
THEN RenameVar `X' (-2))xxx
Home
Index