Nuprl Lemma : fan+weak-continuity-implies-uniform-continuity

F:(ℕ ⟶ 𝔹) ⟶ ℕ. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] guard: {T} exists: x:A. B[x] nat: not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B prop: implies:  Q so_lambda: λ2x.t[x] uall: [x:A]. B[x] squash: T so_apply: x[s1;s2] top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 int_seg: {i..j-} ext2Cantor: ext2Cantor(n;f;d) less_than: a < b lelt: i ≤ j < k rev_implies:  Q iff: ⇐⇒ Q true: True
Lemmas referenced :  bool_wf nat_wf implies-quotient-true2 trivial-quotient-true subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf equal_wf all_wf exists_wf strong-continuity2-implies-weak-skolem-cantor-nat btrue_wf ext2Cantor_wf le_wf fan_theorem int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties imax_nat imax_wf less_than_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_seg_properties imax_strict_ub imax_ub int_subtype_base set_subtype_base assert_wf assert_elim and_wf iff_imp_equal_bool lelt_wf iff_weakening_equal true_wf squash_wf equal_functionality_wrt_subtype_rel2
Rules used in proof :  hypothesis extract_by_obid introduction cut functionEquality lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination productElimination rename setElimination independent_pairFormation independent_isectElimination functionExtensionality applyEquality natural_numberEquality lambdaEquality sqequalRule because_Cache isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution baseClosed imageMemberEquality imageElimination voidEquality voidElimination isect_memberEquality intEquality int_eqEquality approximateComputation unionElimination applyLambdaEquality equalitySymmetry equalityTransitivity dependent_set_memberEquality dependent_pairFormation cumulativity instantiate promote_hyp equalityElimination inrFormation inlFormation levelHypothesis addLevel universeEquality

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2018_05_21-PM-01_19_52
Last ObjectModification: 2018_05_18-PM-04_07_39

Theory : continuity


Home Index