Nuprl Lemma : fan+weak-continuity-implies-uniform-continuity
∀F:(ℕ ⟶ 𝔹) ⟶ ℕ. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) ⇒ ((F f) = (F g) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
all: ∀x:A. B[x], 
guard: {T}, 
exists: ∃x:A. B[x], 
nat: ℕ, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
uimplies: b supposing a, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
uall: ∀[x:A]. B[x], 
squash: ↓T, 
so_apply: x[s1;s2], 
top: Top, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
int_seg: {i..j-}, 
ext2Cantor: ext2Cantor(n;f;d), 
less_than: a < b, 
lelt: i ≤ j < k, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True
Lemmas referenced : 
bool_wf, 
nat_wf, 
implies-quotient-true2, 
trivial-quotient-true, 
subtype_rel_self, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
equal_wf, 
all_wf, 
exists_wf, 
strong-continuity2-implies-weak-skolem-cantor-nat, 
btrue_wf, 
ext2Cantor_wf, 
le_wf, 
fan_theorem, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
imax_nat, 
imax_wf, 
less_than_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_seg_properties, 
imax_strict_ub, 
imax_ub, 
int_subtype_base, 
set_subtype_base, 
assert_wf, 
assert_elim, 
and_wf, 
iff_imp_equal_bool, 
lelt_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
functionEquality, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
productElimination, 
rename, 
setElimination, 
independent_pairFormation, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
unionElimination, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
dependent_pairFormation, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityElimination, 
inrFormation, 
inlFormation, 
levelHypothesis, 
addLevel, 
universeEquality
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
Date html generated:
2018_05_21-PM-01_19_52
Last ObjectModification:
2018_05_18-PM-04_07_39
Theory : continuity
Home
Index