Nuprl Lemma : trivial-quotient-true
∀[P:ℙ]. (P 
⇒ ⇃(P))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
true: True
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
true_wf, 
equiv_rel_true, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
hypothesisEquality, 
universeEquality, 
sqequalHypSubstitution, 
lambdaEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
isectElimination, 
thin, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[P:\mBbbP{}].  (P  {}\mRightarrow{}  \00D9(P))
Date html generated:
2016_05_14-AM-06_08_41
Last ObjectModification:
2015_12_26-AM-11_48_16
Theory : quot_1
Home
Index