Nuprl Lemma : trivial-quotient-true

[P:ℙ]. (P  ⇃(P))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] uall: [x:A]. B[x] prop: implies:  Q true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T prop: true: True so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x]
Lemmas referenced :  true_wf equiv_rel_true quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction hypothesisEquality universeEquality sqequalHypSubstitution lambdaEquality cut lemma_by_obid hypothesis sqequalRule isectElimination thin natural_numberEquality independent_isectElimination dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[P:\mBbbP{}].  (P  {}\mRightarrow{}  \00D9(P))



Date html generated: 2016_05_14-AM-06_08_41
Last ObjectModification: 2015_12_26-AM-11_48_16

Theory : quot_1


Home Index