Nuprl Lemma : strong-continuity2-implies-weak-skolem-cantor-nat

F:(ℕ ⟶ 𝔹) ⟶ ℕ. ⇃(∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  ((F f) (F g) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A pi1: fst(t) isl: isl(x) sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cand: c∧ B quotient: x,y:A//B[x; y] squash: T
Lemmas referenced :  nat_wf bool_wf strong-continuity2-no-inner-squash-cantor2 exists_wf int_seg_wf unit_wf2 all_wf equal_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self isect_wf assert_wf isl_wf and_wf btrue_wf subtype_base_sq bool_subtype_base nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_wf true_wf quotient_wf equiv_rel_true quotient-member-eq equal-wf-base member_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality cut introduction extract_by_obid hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination natural_numberEquality setElimination rename because_Cache unionEquality sqequalRule lambdaEquality productEquality applyEquality functionExtensionality independent_isectElimination independent_pairFormation inlEquality dependent_pairFormation independent_pairEquality equalityTransitivity equalitySymmetry independent_functionElimination dependent_set_memberEquality applyLambdaEquality instantiate cumulativity unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll promote_hyp pointwiseFunctionality pertypeElimination imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2017_04_17-AM-09_57_00
Last ObjectModification: 2017_02_27-PM-05_51_30

Theory : continuity


Home Index