Step
*
of Lemma
finite-nat-seq-to-list-prop1
∀[f:finite-nat-seq()]
((||finite-nat-seq-to-list(f)|| = (fst(f)) ∈ ℕ) ∧ (∀i:ℕfst(f). (finite-nat-seq-to-list(f)[i] = ((snd(f)) i) ∈ ℕ)))
BY
{ ((D 0 THENA Auto)
THEN (D (-1) THENA Auto)
THEN RepUR ``finite-nat-seq-to-list`` 0
THEN (NatInd (-2) THENA Auto)
THEN (D 0 THENA Auto)
THEN Reduce 0) }
1
1. n : ℤ
2. f1 : ℕ0 ⟶ ℕ
⊢ (0 = 0 ∈ ℕ) ∧ (∀i:ℕ0. (⊥ = (f1 i) ∈ ℕ))
2
1. n : ℤ
2. 0 < n
3. ∀f1:ℕn - 1 ⟶ ℕ
((||primrec(n - 1;[];λi,r. (r @ [f1 i]))|| = (n - 1) ∈ ℕ)
∧ (∀i:ℕn - 1. (primrec(n - 1;[];λi,r. (r @ [f1 i]))[i] = (f1 i) ∈ ℕ)))
4. f1 : ℕn ⟶ ℕ
⊢ (||primrec(n;[];λi,r. (r @ [f1 i]))|| = n ∈ ℕ) ∧ (∀i:ℕn. (primrec(n;[];λi,r. (r @ [f1 i]))[i] = (f1 i) ∈ ℕ))
Latex:
Latex:
\mforall{}[f:finite-nat-seq()]
((||finite-nat-seq-to-list(f)|| = (fst(f)))
\mwedge{} (\mforall{}i:\mBbbN{}fst(f). (finite-nat-seq-to-list(f)[i] = ((snd(f)) i))))
By
Latex:
((D 0 THENA Auto)
THEN (D (-1) THENA Auto)
THEN RepUR ``finite-nat-seq-to-list`` 0
THEN (NatInd (-2) THENA Auto)
THEN (D 0 THENA Auto)
THEN Reduce 0)
Home
Index