Nuprl Lemma : finite-nat-seq-to-list-prop1

[f:finite-nat-seq()]
  ((||finite-nat-seq-to-list(f)|| (fst(f)) ∈ ℕ) ∧ (∀i:ℕfst(f). (finite-nat-seq-to-list(f)[i] ((snd(f)) i) ∈ ℕ)))


Proof




Definitions occuring in Statement :  finite-nat-seq-to-list: finite-nat-seq-to-list(f) finite-nat-seq: finite-nat-seq() select: L[n] length: ||as|| int_seg: {i..j-} nat: uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) all: x:A. B[x] and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T finite-nat-seq: finite-nat-seq() finite-nat-seq-to-list: finite-nat-seq-to-list(f) pi1: fst(t) pi2: snd(t) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) or: P ∨ Q cand: c∧ B le: A ≤ B less_than': less_than'(a;b) guard: {T} int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  squash: T less_than: a < b true: True iff: ⇐⇒ Q rev_implies:  Q cons: [a b]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf nat_wf primrec0_lemma length_of_nil_lemma stuck-spread base_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma finite-nat-seq_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma false_wf le_wf int_seg_properties lelt_wf subtype_rel_dep_function int_seg_subtype subtype_rel_self primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int length-append length_of_cons_lemma itermAdd_wf int_term_value_add_lemma decidable__lt squash_wf true_wf select_append_front primrec_wf list_wf nil_wf append_wf cons_wf iff_weakening_equal non_neg_length select_wf length_wf_nat set_subtype_base int_subtype_base select_append_back length-singleton length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule extract_by_obid isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination independent_pairEquality axiomEquality functionEquality baseClosed unionElimination because_Cache dependent_set_memberEquality equalityTransitivity equalitySymmetry applyLambdaEquality applyEquality functionExtensionality equalityElimination promote_hyp instantiate cumulativity addEquality imageElimination universeEquality imageMemberEquality minusEquality productEquality

Latex:
\mforall{}[f:finite-nat-seq()]
    ((||finite-nat-seq-to-list(f)||  =  (fst(f)))
    \mwedge{}  (\mforall{}i:\mBbbN{}fst(f).  (finite-nat-seq-to-list(f)[i]  =  ((snd(f))  i))))



Date html generated: 2017_04_20-AM-07_29_14
Last ObjectModification: 2017_02_27-PM-06_01_37

Theory : continuity


Home Index