Nuprl Lemma : finite-nat-seq-to-list-prop1
∀[f:finite-nat-seq()]
  ((||finite-nat-seq-to-list(f)|| = (fst(f)) ∈ ℕ) ∧ (∀i:ℕfst(f). (finite-nat-seq-to-list(f)[i] = ((snd(f)) i) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
finite-nat-seq-to-list: finite-nat-seq-to-list(f)
, 
finite-nat-seq: finite-nat-seq()
, 
select: L[n]
, 
length: ||as||
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
finite-nat-seq: finite-nat-seq()
, 
finite-nat-seq-to-list: finite-nat-seq-to-list(f)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
less_than: a < b
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cons: [a / b]
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
nat_wf, 
primrec0_lemma, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
finite-nat-seq_wf, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
false_wf, 
le_wf, 
int_seg_properties, 
lelt_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
length-append, 
length_of_cons_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
squash_wf, 
true_wf, 
select_append_front, 
primrec_wf, 
list_wf, 
nil_wf, 
append_wf, 
cons_wf, 
iff_weakening_equal, 
non_neg_length, 
select_wf, 
length_wf_nat, 
set_subtype_base, 
int_subtype_base, 
select_append_back, 
length-singleton, 
length_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
baseClosed, 
unionElimination, 
because_Cache, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
applyEquality, 
functionExtensionality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
addEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
minusEquality, 
productEquality
Latex:
\mforall{}[f:finite-nat-seq()]
    ((||finite-nat-seq-to-list(f)||  =  (fst(f)))
    \mwedge{}  (\mforall{}i:\mBbbN{}fst(f).  (finite-nat-seq-to-list(f)[i]  =  ((snd(f))  i))))
Date html generated:
2017_04_20-AM-07_29_14
Last ObjectModification:
2017_02_27-PM-06_01_37
Theory : continuity
Home
Index