Nuprl Lemma : finite-nat-seq_wf
finite-nat-seq() ∈ Type
Proof
Definitions occuring in Statement : 
finite-nat-seq: finite-nat-seq()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
finite-nat-seq: finite-nat-seq()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
Lemmas referenced : 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
productEquality, 
cut, 
lemma_by_obid, 
hypothesis, 
functionEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality
Latex:
finite-nat-seq()  \mmember{}  Type
Date html generated:
2016_05_14-PM-09_54_26
Last ObjectModification:
2016_01_15-AM-07_32_51
Theory : continuity
Home
Index