Step
*
1
2
2
of Lemma
gamma-neighbourhood-prop5
1. beta : ℕ ⟶ ℕ
2. n : ℕ
3. m : ℕ
4. ¬↑init-seg-nat-seq(0s^(m);0s^(n))
5. ¬((beta 0) = 0 ∈ ℤ)
6. y : ¬(∃x:ℕ. ((↑init-seg-nat-seq(0s^(n)**λi.x^(1);0s^(m))) ∧ (¬((beta x) = 0 ∈ ℤ)) ∧ (∀y:ℕx. ((beta y) = 0 ∈ ℤ))))
⊢ n < m ∧ ((inl 0) = (inl 1) ∈ (ℕ?))
BY
{ ((Assert ⌜False⌝⋅ THEN Auto) THEN ExRepD) }
1
.....assertion.....
1. beta : ℕ ⟶ ℕ
2. n : ℕ
3. m : ℕ
4. ¬↑init-seg-nat-seq(0s^(m);0s^(n))
5. ¬((beta 0) = 0 ∈ ℤ)
6. y : ¬(∃x:ℕ. ((↑init-seg-nat-seq(0s^(n)**λi.x^(1);0s^(m))) ∧ (¬((beta x) = 0 ∈ ℤ)) ∧ (∀y:ℕx. ((beta y) = 0 ∈ ℤ))))
⊢ False
Latex:
Latex:
1. beta : \mBbbN{} {}\mrightarrow{} \mBbbN{}
2. n : \mBbbN{}
3. m : \mBbbN{}
4. \mneg{}\muparrow{}init-seg-nat-seq(0s\^{}(m);0s\^{}(n))
5. \mneg{}((beta 0) = 0)
6. y : \mneg{}(\mexists{}x:\mBbbN{}
((\muparrow{}init-seg-nat-seq(0s\^{}(n)**\mlambda{}i.x\^{}(1);0s\^{}(m)))
\mwedge{} (\mneg{}((beta x) = 0))
\mwedge{} (\mforall{}y:\mBbbN{}x. ((beta y) = 0))))
\mvdash{} n < m \mwedge{} ((inl 0) = (inl 1))
By
Latex:
((Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto) THEN ExRepD)
Home
Index