Nuprl Lemma : gamma-neighbourhood-prop5
∀beta:ℕ ⟶ ℕ. ∀n,m:ℕ.
  ((¬((beta 0) = 0 ∈ ℤ))
  
⇒ (↑isl(gamma-neighbourhood(beta;0s^(n)) 0s^(m)))
  
⇒ (n < m ∧ ((gamma-neighbourhood(beta;0s^(n)) 0s^(m)) = (inl 1) ∈ (ℕ?))))
Proof
Definitions occuring in Statement : 
gamma-neighbourhood: gamma-neighbourhood(beta;n0)
, 
mk-finite-nat-seq: f^(n)
, 
zero-seq: 0s
, 
nat: ℕ
, 
assert: ↑b
, 
isl: isl(x)
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
isl: isl(x)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
gamma-neighbourhood: gamma-neighbourhood(beta;n0)
, 
exposed-bfalse: exposed-bfalse
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
mk-finite-nat-seq: f^(n)
, 
pi1: fst(t)
, 
ge: i ≥ j 
, 
pi2: snd(t)
, 
zero-seq: 0s
, 
finite-nat-seq: finite-nat-seq()
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
append-finite-nat-seq: f**g
, 
less_than: a < b
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
istype-assert, 
gamma-neighbourhood_wf, 
mk-finite-nat-seq_wf, 
zero-seq_wf, 
subtype_rel_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
btrue_wf, 
bfalse_wf, 
istype-int, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
istype-nat, 
init-seg-nat-seq_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
extend-seq1-all-dec, 
finite-nat-seq_wf, 
decidable_wf, 
assert_wf, 
append-finite-nat-seq_wf, 
not_wf, 
equal-wf-base, 
true_wf, 
unit_wf2, 
decidable__lt, 
assert-init-seg-nat-seq2, 
nat_properties, 
intformand_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
lt_int_wf, 
assert_of_lt_int, 
istype-top, 
iff_weakening_uiff, 
less_than_wf, 
istype-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
Error :inhabitedIsType, 
unionElimination, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
Error :functionIsType, 
Error :dependent_set_memberEquality_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
intEquality, 
baseClosed, 
sqequalBase, 
equalityElimination, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
functionEquality, 
productEquality, 
Error :inlEquality_alt, 
int_eqEquality, 
Error :functionExtensionality_alt, 
Error :productIsType, 
addEquality, 
lessCases, 
Error :isect_memberFormation_alt, 
axiomSqEquality, 
Error :isectIsTypeImplies, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n,m:\mBbbN{}.
    ((\mneg{}((beta  0)  =  0))
    {}\mRightarrow{}  (\muparrow{}isl(gamma-neighbourhood(beta;0s\^{}(n))  0s\^{}(m)))
    {}\mRightarrow{}  (n  <  m  \mwedge{}  ((gamma-neighbourhood(beta;0s\^{}(n))  0s\^{}(m))  =  (inl  1))))
Date html generated:
2019_06_20-PM-03_04_35
Last ObjectModification:
2018_12_06-PM-11_34_47
Theory : continuity
Home
Index