Nuprl Lemma : mk-finite-nat-seq_wf
∀[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  (f^(n) ∈ finite-nat-seq())
Proof
Definitions occuring in Statement : 
mk-finite-nat-seq: f^(n)
, 
finite-nat-seq: finite-nat-seq()
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mk-finite-nat-seq: f^(n)
, 
finite-nat-seq: finite-nat-seq()
, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
dependent_pairEquality, 
hypothesisEquality, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (f\^{}(n)  \mmember{}  finite-nat-seq())
Date html generated:
2016_05_14-PM-09_54_32
Last ObjectModification:
2016_01_15-AM-07_44_28
Theory : continuity
Home
Index