Nuprl Lemma : mk-finite-nat-seq_wf

[n:ℕ]. ∀[f:ℕn ⟶ ℕ].  (f^(n) ∈ finite-nat-seq())


Proof




Definitions occuring in Statement :  mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk-finite-nat-seq: f^(n) finite-nat-seq: finite-nat-seq() nat:
Lemmas referenced :  nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule dependent_pairEquality hypothesisEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (f\^{}(n)  \mmember{}  finite-nat-seq())



Date html generated: 2016_05_14-PM-09_54_32
Last ObjectModification: 2016_01_15-AM-07_44_28

Theory : continuity


Home Index