Nuprl Lemma : gamma-neighbourhood_wf
∀[beta:ℕ ⟶ ℕ]. ∀[n0:finite-nat-seq()].  (gamma-neighbourhood(beta;n0) ∈ finite-nat-seq() ⟶ (ℕ?))
Proof
Definitions occuring in Statement : 
gamma-neighbourhood: gamma-neighbourhood(beta;n0), 
finite-nat-seq: finite-nat-seq(), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
union: left + right
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
gamma-neighbourhood: gamma-neighbourhood(beta;n0), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
so_apply: x[s], 
decidable: Dec(P)
Lemmas referenced : 
init-seg-nat-seq_wf, 
bool_wf, 
eqtt_to_assert, 
it_wf, 
nat_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
finite-nat-seq_wf, 
extend-seq1-all-dec, 
all_wf, 
decidable_wf, 
exists_wf, 
assert_wf, 
append-finite-nat-seq_wf, 
mk-finite-nat-seq_wf, 
false_wf, 
le_wf, 
int_seg_wf, 
not_wf, 
equal-wf-T-base, 
int_seg_subtype_nat, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
inrEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
applyEquality, 
productEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
intEquality, 
functionExtensionality, 
baseClosed, 
setElimination, 
rename, 
inlEquality
Latex:
\mforall{}[beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n0:finite-nat-seq()].    (gamma-neighbourhood(beta;n0)  \mmember{}  finite-nat-seq()  {}\mrightarrow{}  (\mBbbN{}?))
Date html generated:
2017_04_20-AM-07_30_26
Last ObjectModification:
2017_02_27-PM-06_00_57
Theory : continuity
Home
Index