Nuprl Lemma : gamma-neighbourhood_wf

[beta:ℕ ⟶ ℕ]. ∀[n0:finite-nat-seq()].  (gamma-neighbourhood(beta;n0) ∈ finite-nat-seq() ⟶ (ℕ?))


Proof




Definitions occuring in Statement :  gamma-neighbourhood: gamma-neighbourhood(beta;n0) finite-nat-seq: finite-nat-seq() nat: uall: [x:A]. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T gamma-neighbourhood: gamma-neighbourhood(beta;n0) all: x:A. B[x] implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A so_apply: x[s] decidable: Dec(P)
Lemmas referenced :  init-seg-nat-seq_wf bool_wf eqtt_to_assert it_wf nat_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot finite-nat-seq_wf extend-seq1-all-dec all_wf decidable_wf exists_wf assert_wf append-finite-nat-seq_wf mk-finite-nat-seq_wf false_wf le_wf int_seg_wf not_wf equal-wf-T-base int_seg_subtype_nat unit_wf2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule inrEquality dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination axiomEquality isect_memberEquality functionEquality applyEquality productEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation intEquality functionExtensionality baseClosed setElimination rename inlEquality

Latex:
\mforall{}[beta:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[n0:finite-nat-seq()].    (gamma-neighbourhood(beta;n0)  \mmember{}  finite-nat-seq()  {}\mrightarrow{}  (\mBbbN{}?))



Date html generated: 2017_04_20-AM-07_30_26
Last ObjectModification: 2017_02_27-PM-06_00_57

Theory : continuity


Home Index