Nuprl Lemma : init-seg-nat-seq_wf

[f,g:finite-nat-seq()].  (init-seg-nat-seq(f;g) ∈ 𝔹)


Proof




Definitions occuring in Statement :  init-seg-nat-seq: init-seg-nat-seq(f;g) finite-nat-seq: finite-nat-seq() bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T init-seg-nat-seq: init-seg-nat-seq(f;g) finite-nat-seq: finite-nat-seq() nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff prop: iff: ⇐⇒ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  ble_wf bool_wf eqtt_to_assert equal-upto-finite-nat-seq_wf int_seg_wf equal_wf finite-nat-seq_wf assert-ble subtype_rel_dep_function nat_wf int_seg_subtype false_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin extract_by_obid isectElimination setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination independent_isectElimination functionExtensionality applyEquality natural_numberEquality because_Cache equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomEquality isect_memberEquality lambdaEquality independent_pairFormation

Latex:
\mforall{}[f,g:finite-nat-seq()].    (init-seg-nat-seq(f;g)  \mmember{}  \mBbbB{})



Date html generated: 2017_04_20-AM-07_29_29
Last ObjectModification: 2017_02_27-PM-06_00_29

Theory : continuity


Home Index