Nuprl Lemma : init-seg-nat-seq_wf
∀[f,g:finite-nat-seq()].  (init-seg-nat-seq(f;g) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
init-seg-nat-seq: init-seg-nat-seq(f;g), 
finite-nat-seq: finite-nat-seq(), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
init-seg-nat-seq: init-seg-nat-seq(f;g), 
finite-nat-seq: finite-nat-seq(), 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
bfalse: ff, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A
Lemmas referenced : 
ble_wf, 
bool_wf, 
eqtt_to_assert, 
equal-upto-finite-nat-seq_wf, 
int_seg_wf, 
equal_wf, 
finite-nat-seq_wf, 
assert-ble, 
subtype_rel_dep_function, 
nat_wf, 
int_seg_subtype, 
false_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
natural_numberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
lambdaEquality, 
independent_pairFormation
Latex:
\mforall{}[f,g:finite-nat-seq()].    (init-seg-nat-seq(f;g)  \mmember{}  \mBbbB{})
Date html generated:
2017_04_20-AM-07_29_29
Last ObjectModification:
2017_02_27-PM-06_00_29
Theory : continuity
Home
Index