Nuprl Lemma : equal-upto-finite-nat-seq_wf

[n:ℕ]. ∀[f,g:ℕn ⟶ ℕ].  (equal-upto-finite-nat-seq(n;f;g) ∈ 𝔹)


Proof




Definitions occuring in Statement :  equal-upto-finite-nat-seq: equal-upto-finite-nat-seq(n;f;g) int_seg: {i..j-} nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T equal-upto-finite-nat-seq: equal-upto-finite-nat-seq(n;f;g) subtype_rel: A ⊆B nat:
Lemmas referenced :  nat_wf int_seg_wf eq_int_wf band_wf btrue_wf bool_wf primrec_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality applyEquality setElimination rename because_Cache natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (equal-upto-finite-nat-seq(n;f;g)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-09_55_08
Last ObjectModification: 2016_01_15-AM-10_56_52

Theory : continuity


Home Index