Nuprl Lemma : equal-upto-finite-nat-seq_wf
∀[n:ℕ]. ∀[f,g:ℕn ⟶ ℕ].  (equal-upto-finite-nat-seq(n;f;g) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
equal-upto-finite-nat-seq: equal-upto-finite-nat-seq(n;f;g)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
equal-upto-finite-nat-seq: equal-upto-finite-nat-seq(n;f;g)
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
int_seg_wf, 
eq_int_wf, 
band_wf, 
btrue_wf, 
bool_wf, 
primrec_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (equal-upto-finite-nat-seq(n;f;g)  \mmember{}  \mBbbB{})
Date html generated:
2016_05_14-PM-09_55_08
Last ObjectModification:
2016_01_15-AM-10_56_52
Theory : continuity
Home
Index