Nuprl Lemma : ble_wf

[n,m:ℤ].  (ble(n;m) ∈ 𝔹)


Proof




Definitions occuring in Statement :  ble: ble(n;m) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ble: ble(n;m) false: False implies:  Q not: ¬A less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top prop:
Lemmas referenced :  btrue_wf top_wf less_than_wf bfalse_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule int_eqEquality hypothesisEquality extract_by_obid hypothesis sqequalHypSubstitution lessCases independent_pairFormation isectElimination thin baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality isect_memberEquality because_Cache voidElimination voidEquality lambdaFormation imageElimination productElimination independent_functionElimination axiomEquality intEquality

Latex:
\mforall{}[n,m:\mBbbZ{}].    (ble(n;m)  \mmember{}  \mBbbB{})



Date html generated: 2019_06_20-PM-03_03_12
Last ObjectModification: 2018_08_20-PM-09_40_40

Theory : continuity


Home Index