Nuprl Lemma : ble_wf
∀[n,m:ℤ].  (ble(n;m) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
ble: ble(n;m)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ble: ble(n;m)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
btrue_wf, 
top_wf, 
less_than_wf, 
bfalse_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
int_eqEquality, 
hypothesisEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
lessCases, 
independent_pairFormation, 
isectElimination, 
thin, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
productElimination, 
independent_functionElimination, 
axiomEquality, 
intEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].    (ble(n;m)  \mmember{}  \mBbbB{})
Date html generated:
2019_06_20-PM-03_03_12
Last ObjectModification:
2018_08_20-PM-09_40_40
Theory : continuity
Home
Index