Nuprl Lemma : zero-seq_wf
0s ∈ ℕ ⟶ ℕ
Proof
Definitions occuring in Statement : 
zero-seq: 0s, 
nat: ℕ, 
member: t ∈ T, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
zero-seq: 0s, 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
nat_wf, 
le_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality
Latex:
0s  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
Date html generated:
2016_05_14-PM-09_54_20
Last ObjectModification:
2016_01_15-AM-06_35_12
Theory : continuity
Home
Index