Nuprl Lemma : assert-init-seg-nat-seq2

f,g:finite-nat-seq().  (↑init-seg-nat-seq(f;g) ⇐⇒ ((fst(f)) ≤ (fst(g))) ∧ ((snd(f)) (snd(g)) ∈ (ℕfst(f) ⟶ ℕ)))


Proof




Definitions occuring in Statement :  init-seg-nat-seq: init-seg-nat-seq(f;g) finite-nat-seq: finite-nat-seq() int_seg: {i..j-} nat: assert: b pi1: fst(t) pi2: snd(t) le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] init-seg-nat-seq: init-seg-nat-seq(f;g) finite-nat-seq: finite-nat-seq() pi1: fst(t) pi2: snd(t) member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False iff: ⇐⇒ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) not: ¬A rev_implies:  Q
Lemmas referenced :  ble_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot finite-nat-seq_wf assert-ble int_seg_wf nat_wf subtype_rel_dep_function int_seg_subtype false_wf subtype_rel_self le_wf assert-equal-upto-finite-nat-seq assert_wf equal-upto-finite-nat-seq_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin rename sqequalRule cut introduction extract_by_obid isectElimination setElimination hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination independent_pairFormation functionEquality natural_numberEquality functionExtensionality applyEquality lambdaEquality productEquality addLevel impliesFunctionality

Latex:
\mforall{}f,g:finite-nat-seq().    (\muparrow{}init-seg-nat-seq(f;g)  \mLeftarrow{}{}\mRightarrow{}  ((fst(f))  \mleq{}  (fst(g)))  \mwedge{}  ((snd(f))  =  (snd(g))))



Date html generated: 2017_04_20-AM-07_29_44
Last ObjectModification: 2017_02_27-PM-06_00_33

Theory : continuity


Home Index