Nuprl Lemma : assert-init-seg-nat-seq2
∀f,g:finite-nat-seq().  (↑init-seg-nat-seq(f;g) ⇐⇒ ((fst(f)) ≤ (fst(g))) ∧ ((snd(f)) = (snd(g)) ∈ (ℕfst(f) ⟶ ℕ)))
Proof
Definitions occuring in Statement : 
init-seg-nat-seq: init-seg-nat-seq(f;g), 
finite-nat-seq: finite-nat-seq(), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
pi1: fst(t), 
pi2: snd(t), 
le: A ≤ B, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
init-seg-nat-seq: init-seg-nat-seq(f;g), 
finite-nat-seq: finite-nat-seq(), 
pi1: fst(t), 
pi2: snd(t), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
iff: P ⇐⇒ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
rev_implies: P ⇐ Q
Lemmas referenced : 
ble_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
finite-nat-seq_wf, 
assert-ble, 
int_seg_wf, 
nat_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
subtype_rel_self, 
le_wf, 
assert-equal-upto-finite-nat-seq, 
assert_wf, 
equal-upto-finite-nat-seq_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
rename, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
because_Cache, 
voidElimination, 
independent_pairFormation, 
functionEquality, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
productEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}f,g:finite-nat-seq().    (\muparrow{}init-seg-nat-seq(f;g)  \mLeftarrow{}{}\mRightarrow{}  ((fst(f))  \mleq{}  (fst(g)))  \mwedge{}  ((snd(f))  =  (snd(g))))
Date html generated:
2017_04_20-AM-07_29_44
Last ObjectModification:
2017_02_27-PM-06_00_33
Theory : continuity
Home
Index