Nuprl Lemma : assert-equal-upto-finite-nat-seq
∀[n:ℕ]. ∀[f,g:ℕn ⟶ ℕ].  (↑equal-upto-finite-nat-seq(n;f;g) 
⇐⇒ f = g ∈ (ℕn ⟶ ℕ))
Proof
Definitions occuring in Statement : 
equal-upto-finite-nat-seq: equal-upto-finite-nat-seq(n;f;g)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
equal-upto-finite-nat-seq: equal-upto-finite-nat-seq(n;f;g)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
band: p ∧b q
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
subtract: n - m
, 
cand: A c∧ B
, 
squash: ↓T
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
assert_witness, 
primrec0_lemma, 
int_seg_wf, 
int_seg_properties, 
primrec_wf, 
bool_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
btrue_wf, 
bool_cases, 
subtype_base_sq, 
bool_subtype_base, 
eqtt_to_assert, 
band_wf, 
eq_int_wf, 
bfalse_wf, 
subtract-1-ge-0, 
istype-nat, 
equal-upto-finite-nat-seq_wf, 
true_wf, 
primrec-unroll-1, 
assert_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__lt, 
equal-wf-base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
istype-assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_eq_int, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_rel_self, 
equal_functionality_wrt_subtype_rel2, 
equal_wf, 
iff_weakening_equal, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
Error :lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
because_Cache, 
cumulativity, 
Error :isect_memberFormation_alt, 
Error :isectIsTypeImplies, 
Error :equalityIstype, 
Error :functionExtensionality_alt, 
Error :productIsType, 
productEquality, 
intEquality, 
sqequalBase, 
promote_hyp, 
addEquality, 
minusEquality, 
multiplyEquality, 
functionEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}].    (\muparrow{}equal-upto-finite-nat-seq(n;f;g)  \mLeftarrow{}{}\mRightarrow{}  f  =  g)
Date html generated:
2019_06_20-PM-03_03_18
Last ObjectModification:
2019_01_02-PM-00_36_10
Theory : continuity
Home
Index