Nuprl Lemma : primrec-unroll-1
∀[n:{n:ℤ| 0 < n} ]. ∀[b,c:Top].  (primrec(n;b;c) ~ c (n - 1) primrec(n - 1;b;c))
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
false: False
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
primrec-unroll, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
le-add-cancel2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
top_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
addEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
intEquality, 
independent_functionElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_pairFormation, 
impliesFunctionality, 
sqequalAxiom
Latex:
\mforall{}[n:\{n:\mBbbZ{}|  0  <  n\}  ].  \mforall{}[b,c:Top].    (primrec(n;b;c)  \msim{}  c  (n  -  1)  primrec(n  -  1;b;c))
Date html generated:
2018_05_21-PM-00_02_53
Last ObjectModification:
2018_05_19-AM-07_12_41
Theory : call!by!value_2
Home
Index