Nuprl Lemma : primrec-unroll-1

[n:{n:ℤ0 < n} ]. ∀[b,c:Top].  (primrec(n;b;c) (n 1) primrec(n 1;b;c))


Proof




Definitions occuring in Statement :  primrec: primrec(n;b;c) less_than: a < b uall: [x:A]. B[x] top: Top set: {x:A| B[x]}  apply: a subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  subtype_rel: A ⊆B top: Top le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True false: False bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot top_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_functionElimination addEquality applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality intEquality independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity independent_pairFormation impliesFunctionality sqequalAxiom

Latex:
\mforall{}[n:\{n:\mBbbZ{}|  0  <  n\}  ].  \mforall{}[b,c:Top].    (primrec(n;b;c)  \msim{}  c  (n  -  1)  primrec(n  -  1;b;c))



Date html generated: 2018_05_21-PM-00_02_53
Last ObjectModification: 2018_05_19-AM-07_12_41

Theory : call!by!value_2


Home Index