Step
*
of Lemma
general-cantor-to-int-uniform-continuity
∀B:ℕ ⟶ ℕ+. ∀F:(k:ℕ ⟶ ℕB[k]) ⟶ ℤ.  ∃n:ℕ. ∀f,g:k:ℕ ⟶ ℕB[k].  ((f = g ∈ (k:ℕn ⟶ ℕB[k])) 
⇒ ((F f) = (F g) ∈ ℤ))
BY
{ (InstLemma `general-cantor-to-int-uniform-continuity-half-squashed` [] THEN RepeatFor 2 (ParallelLast')) }
1
1. B : ℕ ⟶ ℕ+
2. F : (k:ℕ ⟶ ℕB[k]) ⟶ ℤ
3. ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f = g ∈ (i:ℕn ⟶ ℕB[i])) 
⇒ ((F f) = (F g) ∈ ℤ)))
⊢ ∃n:ℕ. ∀f,g:k:ℕ ⟶ ℕB[k].  ((f = g ∈ (k:ℕn ⟶ ℕB[k])) 
⇒ ((F f) = (F g) ∈ ℤ))
Latex:
Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mforall{}F:(k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k])  {}\mrightarrow{}  \mBbbZ{}.    \mexists{}n:\mBbbN{}.  \mforall{}f,g:k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))
By
Latex:
(InstLemma  `general-cantor-to-int-uniform-continuity-half-squashed`  []
  THEN  RepeatFor  2  (ParallelLast')
  )
Home
Index