Nuprl Lemma : general-cantor-to-int-uniform-continuity

B:ℕ ⟶ ℕ+. ∀F:(k:ℕ ⟶ ℕB[k]) ⟶ ℤ.  ∃n:ℕ. ∀f,g:k:ℕ ⟶ ℕB[k].  ((f g ∈ (k:ℕn ⟶ ℕB[k]))  ((F f) (F g) ∈ ℤ))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat_plus: + nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] gt: i > j true: True iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 cand: c∧ B guard: {T} istype: istype(T) top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b lelt: i ≤ j < k int_seg: {i..j-} not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a nat: prop: implies:  Q so_lambda: λ2x.t[x] nat_plus: + subtype_rel: A ⊆B so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  le_witness int_formula_prop_eq_lemma intformeq_wf prop-truncation-implies mu-dec-property it_wf unit_wf2 mu-dec_wf change-equality-type respects-equality-trivial not-gt-2 respects-equality-function subtype_rel_transitivity istype-universe true_wf squash_wf decidable__equal_int decidable__not decidable__and2 nat_plus_properties less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf not_wf decidable-exists-finite istype-less_than int_formula_prop_less_lemma intformless_wf decidable__equal_int_seg lelt_wf set_subtype_base le_weakening2 int_seg_subtype decidable__all_int_seg nat_plus_subtype_nat nsub_finite finite-function decidable__lt le_wf int_subtype_base equal-wf-base istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties subtype_rel_dep_function istype-false int_seg_subtype_nat equal_wf all_wf nat_wf exists_wf implies-quotient-true istype-int nat_plus_wf int_seg_wf istype-nat general-cantor-to-int-uniform-continuity-half-squashed
Rules used in proof :  independent_pairEquality dependent_pairEquality_alt baseClosed imageMemberEquality universeEquality hyp_replacement functionExtensionality_alt cumulativity promote_hyp equalityElimination applyLambdaEquality equalityTransitivity inrFormation_alt functionExtensionality inlFormation_alt instantiate equalitySymmetry sqequalBase equalityIstype productIsType productEquality intEquality voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt independent_functionElimination approximateComputation unionElimination imageElimination dependent_set_memberEquality_alt productElimination inhabitedIsType independent_pairFormation independent_isectElimination closedConclusion because_Cache functionEquality sqequalRule rename setElimination lambdaEquality_alt applyEquality natural_numberEquality isectElimination universeIsType functionIsType hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mforall{}F:(k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k])  {}\mrightarrow{}  \mBbbZ{}.    \mexists{}n:\mBbbN{}.  \mforall{}f,g:k:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[k].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))



Date html generated: 2019_10_15-AM-10_26_13
Last ObjectModification: 2019_10_08-PM-05_31_18

Theory : continuity


Home Index