Nuprl Lemma : implies-quotient-true
∀[P,Q:ℙ].  ((P ⇒ Q) ⇒ {⇃(P) ⇒ ⇃(Q)})
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
implies: P ⇒ Q, 
true: True
Definitions unfolded in proof : 
guard: {T}, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
true: True
Lemmas referenced : 
quotient_wf, 
true_wf, 
equiv_rel_true, 
quotient-member-eq, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
pointwiseFunctionalityForEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
pertypeElimination, 
productElimination, 
dependent_functionElimination, 
applyEquality, 
independent_functionElimination, 
natural_numberEquality, 
productEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    ((P  {}\mRightarrow{}  Q)  {}\mRightarrow{}  \{\00D9(P)  {}\mRightarrow{}  \00D9(Q)\})
Date html generated:
2016_05_14-AM-06_08_38
Last ObjectModification:
2015_12_26-AM-11_48_13
Theory : quot_1
Home
Index