Nuprl Lemma : general-cantor-to-int-uniform-continuity-half-squashed

B:ℕ ⟶ ℕ+. ∀F:(i:ℕ ⟶ ℕB[i]) ⟶ ℤ.  ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ ℕB[i].  ((f g ∈ (i:ℕn ⟶ ℕB[i]))  ((F f) (F g) ∈ ℤ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat_plus: + nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a implies:  Q nat_plus: + guard: {T} prop: top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} listp: List+ sq_exists: x:A [B[x]] rev_implies:  Q iff: ⇐⇒ Q squash: T less_than: a < b l_exists: (∃x∈L. P[x]) istype: istype(T) isl: isl(x) nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) uiff: uiff(P;Q) bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹
Lemmas referenced :  general-uniform-continuity-from-fan-ext int_seg_wf istype-nat nat_plus_wf istype-int istype-less_than int_formula_prop_less_lemma intformless_wf nat_plus_properties istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le decidable__lt nat_properties istype-false le_wf sq_exists_wf nat_wf trivial-quotient-true length_wf upto_wf map_wf length_upto map-length imax-list-nat int_seg_properties imax-list-ub select_wf nat_plus_subtype_nat select-upto top_wf subtype_rel_list select-map strong-continuity2-half-squash-surject-biject-ext countable-nsub-family biject-int-nat int_subtype_base set_subtype_base zero-le-nat subtype_rel_dep_function istype-assert unit_subtype_base union_subtype_base subtype_rel_self int_seg_subtype_nat subtype_rel_function bfalse_wf btrue_wf assert_wf isect_wf equal-wf-base-T all_wf unit_wf2 exists_wf implies-quotient-true2 neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert eq_int_wf int_formula_prop_eq_lemma intformeq_wf bool_wf assert_of_eq_int eqtt_to_assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality_alt natural_numberEquality applyEquality hypothesisEquality hypothesis because_Cache independent_isectElimination independent_functionElimination intEquality dependent_functionElimination functionIsType universeIsType setElimination rename productIsType applyLambdaEquality equalitySymmetry equalityTransitivity voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination independent_pairFormation dependent_set_memberEquality_alt equalityIstype inhabitedIsType functionEquality dependent_set_memberFormation_alt functionExtensionality imageElimination productElimination productEquality sqequalBase isectIsType unionIsType spreadEquality inlEquality_alt unionEquality closedConclusion instantiate promote_hyp equalityElimination isect_memberFormation_alt cumulativity dependent_pairEquality_alt

Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mforall{}F:(i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i])  {}\mrightarrow{}  \mBbbZ{}.    \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2020_05_19-PM-10_04_56
Last ObjectModification: 2019_11_22-AM-10_51_12

Theory : continuity


Home Index