Nuprl Lemma : countable-nsub-family
∀B:ℕ ⟶ ℕ+. ∃g:ℕ ⟶ (i:ℕ × ℕB[i]). Surj(ℕ;i:ℕ × ℕB[i];g)
Proof
Definitions occuring in Statement : 
surject: Surj(A;B;f)
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
squash: ↓T
, 
less_than: a < b
, 
surject: Surj(A;B;f)
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
biject: Bij(A;B;f)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
le_wf, 
product_subtype_base, 
lelt_wf, 
set_subtype_base, 
int_subtype_base, 
ifthenelse_wf, 
int_seg_properties, 
int_seg_subtype_nat, 
int_formula_prop_less_lemma, 
intformless_wf, 
nat_plus_properties, 
decidable__lt, 
istype-false, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
istype-less_than, 
istype-le, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
compose_wf, 
nat_plus_wf, 
int_seg_wf, 
compose-surjections, 
nat_wf, 
surject_wf, 
istype-nat, 
coded-pair_wf, 
code-pair-bijection
Rules used in proof : 
baseClosed, 
closedConclusion, 
baseApply, 
independent_pairEquality, 
dependent_pairEquality_alt, 
spreadEquality, 
functionExtensionality, 
sqequalBase, 
intEquality, 
imageElimination, 
applyLambdaEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
equalityIstype, 
equalitySymmetry, 
equalityTransitivity, 
productIsType, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
equalityElimination, 
unionElimination, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
rename, 
setElimination, 
applyEquality, 
natural_numberEquality, 
productEquality, 
universeIsType, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
thin, 
productElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mexists{}g:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}  \mtimes{}  \mBbbN{}B[i]).  Surj(\mBbbN{};i:\mBbbN{}  \mtimes{}  \mBbbN{}B[i];g)
Date html generated:
2019_10_15-AM-10_25_40
Last ObjectModification:
2019_10_08-PM-00_38_37
Theory : num_thy_1
Home
Index