Nuprl Lemma : countable-nsub-family

B:ℕ ⟶ ℕ+. ∃g:ℕ ⟶ (i:ℕ × ℕB[i]). Surj(ℕ;i:ℕ × ℕB[i];g)


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) int_seg: {i..j-} nat_plus: + nat: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n
Definitions unfolded in proof :  pi1: fst(t) so_lambda: λ2x.t[x] squash: T less_than: a < b surject: Surj(A;B;f) less_than': less_than'(a;b) le: A ≤ B iff: ⇐⇒ Q rev_implies:  Q assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) bfalse: ff top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} uimplies: supposing a uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 nat: implies:  Q nat_plus: + subtype_rel: A ⊆B so_apply: x[s] prop: uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] and: P ∧ Q biject: Bij(A;B;f) all: x:A. B[x]
Lemmas referenced :  le_wf product_subtype_base lelt_wf set_subtype_base int_subtype_base ifthenelse_wf int_seg_properties int_seg_subtype_nat int_formula_prop_less_lemma intformless_wf nat_plus_properties decidable__lt istype-false less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert istype-less_than istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties assert_of_lt_int eqtt_to_assert lt_int_wf compose_wf nat_plus_wf int_seg_wf compose-surjections nat_wf surject_wf istype-nat coded-pair_wf code-pair-bijection
Rules used in proof :  baseClosed closedConclusion baseApply independent_pairEquality dependent_pairEquality_alt spreadEquality functionExtensionality sqequalBase intEquality imageElimination applyLambdaEquality cumulativity instantiate promote_hyp equalityIstype equalitySymmetry equalityTransitivity productIsType voidElimination isect_memberEquality_alt int_eqEquality approximateComputation dependent_functionElimination independent_pairFormation dependent_set_memberEquality_alt independent_isectElimination equalityElimination unionElimination inhabitedIsType functionIsType because_Cache independent_functionElimination sqequalRule rename setElimination applyEquality natural_numberEquality productEquality universeIsType hypothesis hypothesisEquality isectElimination lambdaEquality_alt dependent_pairFormation_alt thin productElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}B:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}\msupplus{}.  \mexists{}g:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}  \mtimes{}  \mBbbN{}B[i]).  Surj(\mBbbN{};i:\mBbbN{}  \mtimes{}  \mBbbN{}B[i];g)



Date html generated: 2019_10_15-AM-10_25_40
Last ObjectModification: 2019_10_08-PM-00_38_37

Theory : num_thy_1


Home Index