Nuprl Lemma : code-pair-bijection
Bij(ℕ;ℕ × ℕ;λx.coded-pair(x))
Proof
Definitions occuring in Statement : 
coded-pair: coded-pair(m)
, 
biject: Bij(A;B;f)
, 
nat: ℕ
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
Definitions unfolded in proof : 
biject: Bij(A;B;f)
, 
and: P ∧ Q
, 
inject: Inj(A;B;f)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
surject: Surj(A;B;f)
, 
squash: ↓T
, 
label: ...$L... t
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
nat_wf, 
coded-pair_wf, 
code-pair_wf, 
squash_wf, 
true_wf, 
code-coded-pair, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
le_wf, 
iff_weakening_equal, 
coded-code-pair
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
applyLambdaEquality, 
productElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
independent_pairEquality
Latex:
Bij(\mBbbN{};\mBbbN{}  \mtimes{}  \mBbbN{};\mlambda{}x.coded-pair(x))
Date html generated:
2019_06_20-PM-02_39_28
Last ObjectModification:
2019_06_12-PM-00_27_36
Theory : num_thy_1
Home
Index