Nuprl Lemma : general-uniform-continuity-from-fan-ext

[B:ℕ ⟶ Type]
  ⇃(∀i:ℕ. ∀K:B[i] ⟶ ℕ.  (∃Bnd:ℕ [(∀t:B[i]. ((K t) ≤ Bnd))]))
   (∀[T:Type]
        ∀F:(i:ℕ ⟶ B[i]) ⟶ T
          (⇃(∃M:n:ℕ ⟶ (i:ℕn ⟶ B[i]) ⟶ (T?) [(∀f:i:ℕ ⟶ B[i]
                                                  ((∃n:ℕ((M f) (inl (F f)) ∈ (T?)))
                                                  ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (T?) supposing ↑isl(M f))))])
           ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ B[i].  ((f g ∈ (i:ℕn ⟶ B[i]))  ((F f) (F g) ∈ T))))) 
  supposing ∀i:ℕB[i]


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T isl: isl(x) btrue: tt it: bfalse: ff subtract: m ifthenelse: if then else fi  uall: [x:A]. B[x] uimplies: supposing a bool: 𝔹 unit: Unit sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} general-uniform-continuity-from-fan implies-quotient-true2 trivial-quotient-true simple_more_general_fan_theorem-ext decidable__assert implies-quotient-true so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  general-uniform-continuity-from-fan subtype_base_sq bool_wf bool_subtype_base unit_wf2 lifting-strict-decide strict4-decide implies-quotient-true2 trivial-quotient-true simple_more_general_fan_theorem-ext decidable__assert implies-quotient-true
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination cumulativity independent_isectElimination inlEquality_alt closedConclusion axiomEquality natural_numberEquality universeIsType dependent_functionElimination independent_functionElimination baseClosed Error :memTop

Latex:
\mforall{}[B:\mBbbN{}  {}\mrightarrow{}  Type]
    \00D9(\mforall{}i:\mBbbN{}.  \mforall{}K:B[i]  {}\mrightarrow{}  \mBbbN{}.    (\mexists{}Bnd:\mBbbN{}  [(\mforall{}t:B[i].  ((K  t)  \mleq{}  Bnd))]))
    {}\mRightarrow{}  (\mforall{}[T:Type]
                \mforall{}F:(i:\mBbbN{}  {}\mrightarrow{}  B[i])  {}\mrightarrow{}  T
                    (\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}n  {}\mrightarrow{}  B[i])  {}\mrightarrow{}  (T?)  [(\mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  B[i]
                                                                                                    ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                                                                                    \mwedge{}  (\mforall{}n:\mBbbN{}
                                                                                                              (M  n  f)  =  (inl  (F  f)) 
                                                                                                              supposing  \muparrow{}isl(M  n  f))))])
                    {}\mRightarrow{}  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))))) 
    supposing  \mforall{}i:\mBbbN{}.  B[i]



Date html generated: 2020_05_19-PM-10_04_52
Last ObjectModification: 2019_12_31-PM-00_57_08

Theory : continuity


Home Index