Nuprl Lemma : general-uniform-continuity-from-fan

[B:ℕ ⟶ Type]
  ⇃(∀i:ℕ. ∀K:B[i] ⟶ ℕ.  (∃Bnd:ℕ [(∀t:B[i]. ((K t) ≤ Bnd))]))
   (∀[T:Type]
        ∀F:(i:ℕ ⟶ B[i]) ⟶ T
          (⇃(∃M:n:ℕ ⟶ (i:ℕn ⟶ B[i]) ⟶ (T?) [(∀f:i:ℕ ⟶ B[i]
                                                  ((∃n:ℕ((M f) (inl (F f)) ∈ (T?)))
                                                  ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (T?) supposing ↑isl(M f))))])
           ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ B[i].  ((f g ∈ (i:ℕn ⟶ B[i]))  ((F f) (F g) ∈ T))))) 
  supposing ∀i:ℕB[i]


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a implies:  Q all: x:A. B[x] member: t ∈ T nat: so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B isl: isl(x) less_than': less_than'(a;b) istype: istype(T) sq_exists: x:A [B[x]] so_apply: x[s1;s2] guard: {T} so_lambda: λ2y.t[x; y] bounded-type: Bounded(T) btrue: tt ifthenelse: if then else fi  assert: b rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) true: True sq_stable: SqStable(P) subtract: m rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B sq_type: SQType(T) outl: outl(x)
Lemmas referenced :  implies-quotient-true2 sq_exists_wf nat_wf int_seg_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le unit_wf2 equal_wf assert_wf istype-nat exists_wf all_wf int_seg_subtype_nat istype-false subtype_rel_dep_function le_wf trivial-quotient-true simple_more_general_fan_theorem-ext btrue_wf bfalse_wf istype-assert quotient_wf true_wf equiv_rel_true istype-universe squash_wf isl_wf assert_functionality_wrt_uiff decidable__assert decidable__exists_int_seg sq_stable_from_decidable sq_stable__all int_formula_prop_less_lemma intformless_wf decidable__lt int_term_value_subtract_lemma itermSubtract_wf subtract_wf le-add-cancel add_functionality_wrt_le less-iff-le sq_stable__le zero-add add-swap add-associates minus-minus minus-add minus-one-mul-top add-commutes minus-one-mul condition-implies-le not-le-2 int_seg_subtype iff_weakening_equal subtype_rel_self bool_subtype_base bool_wf subtype_base_sq outl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis natural_numberEquality setElimination rename because_Cache applyEquality hypothesisEquality dependent_set_memberEquality_alt productElimination imageElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType unionEquality productEquality inlEquality_alt isectEquality inhabitedIsType equalityIstype equalityTransitivity equalitySymmetry functionIsType unionIsType closedConclusion promote_hyp imageMemberEquality baseClosed setIsType productIsType isectIsType instantiate universeEquality voidEquality minusEquality addEquality applyLambdaEquality cumulativity

Latex:
\mforall{}[B:\mBbbN{}  {}\mrightarrow{}  Type]
    \00D9(\mforall{}i:\mBbbN{}.  \mforall{}K:B[i]  {}\mrightarrow{}  \mBbbN{}.    (\mexists{}Bnd:\mBbbN{}  [(\mforall{}t:B[i].  ((K  t)  \mleq{}  Bnd))]))
    {}\mRightarrow{}  (\mforall{}[T:Type]
                \mforall{}F:(i:\mBbbN{}  {}\mrightarrow{}  B[i])  {}\mrightarrow{}  T
                    (\00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}n  {}\mrightarrow{}  B[i])  {}\mrightarrow{}  (T?)  [(\mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  B[i]
                                                                                                    ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                                                                                    \mwedge{}  (\mforall{}n:\mBbbN{}
                                                                                                              (M  n  f)  =  (inl  (F  f)) 
                                                                                                              supposing  \muparrow{}isl(M  n  f))))])
                    {}\mRightarrow{}  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:i:\mBbbN{}  {}\mrightarrow{}  B[i].    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))))) 
    supposing  \mforall{}i:\mBbbN{}.  B[i]



Date html generated: 2020_05_19-PM-10_04_49
Last ObjectModification: 2019_11_22-AM-10_53_20

Theory : continuity


Home Index