Step
*
of Lemma
general-uniform-continuity-from-fan
No Annotations
∀[B:ℕ ⟶ Type]
⇃(∀i:ℕ. ∀K:B[i] ⟶ ℕ. (∃Bnd:ℕ [(∀t:B[i]. ((K t) ≤ Bnd))]))
⇒ (∀[T:Type]
∀F:(i:ℕ ⟶ B[i]) ⟶ T
(⇃(∃M:n:ℕ ⟶ (i:ℕn ⟶ B[i]) ⟶ (T?) [(∀f:i:ℕ ⟶ B[i]
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?)))
∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f))))])
⇒ ⇃(∃n:ℕ. ∀f,g:i:ℕ ⟶ B[i]. ((f = g ∈ (i:ℕn ⟶ B[i]))
⇒ ((F f) = (F g) ∈ T)))))
supposing ∀i:ℕ. B[i]
BY
{ (Intros
THEN (UnHalfSquash THENA Auto)
THEN (UnHalfSquashConcl THENA Auto)
THEN D -1
THEN (InstLemma `simple_more_general_fan_theorem-ext` [⌜B⌝;⌜λn,f. (↑isl(M n f))⌝]⋅ THENA Auto)
THEN All(RepUR ``so_apply``)) }
1
1. [B] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ. (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. [T] : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. [%5] : ∀f:i:ℕ ⟶ (B i)
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. i : ℕ
⊢ Bounded(B i)
2
1. B : ℕ ⟶ Type
2. ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ. (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. T : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. ∀f:i:ℕ ⟶ (B i)
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. f : i:ℕ ⟶ (B i)
⊢ ↓∃n:ℕ. (↑isl(M n f))
3
1. [B] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ. (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. [T] : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. [%5] : ∀f:i:ℕ ⟶ (B i)
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. n : ℕ
9. s : i:ℕn ⟶ (B i)
⊢ Dec(↑isl(M n s))
4
1. [B] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ. (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. [T] : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. [%5] : ∀f:i:ℕ ⟶ (B i)
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. ∃k:ℕ [(∀f:i:ℕ ⟶ (B i). ∃n:ℕk. (↑isl(M n f)))]
⊢ ∃n:ℕ. ∀f,g:i:ℕ ⟶ (B i). ((f = g ∈ (i:ℕn ⟶ (B i)))
⇒ ((F f) = (F g) ∈ T))
Latex:
Latex:
No Annotations
\mforall{}[B:\mBbbN{} {}\mrightarrow{} Type]
\00D9(\mforall{}i:\mBbbN{}. \mforall{}K:B[i] {}\mrightarrow{} \mBbbN{}. (\mexists{}Bnd:\mBbbN{} [(\mforall{}t:B[i]. ((K t) \mleq{} Bnd))]))
{}\mRightarrow{} (\mforall{}[T:Type]
\mforall{}F:(i:\mBbbN{} {}\mrightarrow{} B[i]) {}\mrightarrow{} T
(\00D9(\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{}n {}\mrightarrow{} B[i]) {}\mrightarrow{} (T?) [(\mforall{}f:i:\mBbbN{} {}\mrightarrow{} B[i]
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f))))
\mwedge{} (\mforall{}n:\mBbbN{}
(M n f) = (inl (F f))
supposing \muparrow{}isl(M n f))))])
{}\mRightarrow{} \00D9(\mexists{}n:\mBbbN{}. \mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} B[i]. ((f = g) {}\mRightarrow{} ((F f) = (F g))))))
supposing \mforall{}i:\mBbbN{}. B[i]
By
Latex:
(Intros
THEN (UnHalfSquash THENA Auto)
THEN (UnHalfSquashConcl THENA Auto)
THEN D -1
THEN (InstLemma `simple\_more\_general\_fan\_theorem-ext` [\mkleeneopen{}B\mkleeneclose{};\mkleeneopen{}\mlambda{}n,f. (\muparrow{}isl(M n f))\mkleeneclose{}]\mcdot{} THENA Auto)
THEN All(RepUR ``so\_apply``))
Home
Index