Step
*
4
of Lemma
general-uniform-continuity-from-fan
1. [B] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ. (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. [T] : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. [%5] : ∀f:i:ℕ ⟶ (B i)
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. ∃k:ℕ [(∀f:i:ℕ ⟶ (B i). ∃n:ℕk. (↑isl(M n f)))]
⊢ ∃n:ℕ. ∀f,g:i:ℕ ⟶ (B i). ((f = g ∈ (i:ℕn ⟶ (B i)))
⇒ ((F f) = (F g) ∈ T))
BY
{ ExRepD }
1
1. [B] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ. (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. [T] : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. [%5] : ∀f:i:ℕ ⟶ (B i)
((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. k : ℕ
9. ∀f:i:ℕ ⟶ (B i). ∃n:ℕk. (↑isl(M n f))
⊢ ∃n:ℕ. ∀f,g:i:ℕ ⟶ (B i). ((f = g ∈ (i:ℕn ⟶ (B i)))
⇒ ((F f) = (F g) ∈ T))
Latex:
Latex:
1. [B] : \mBbbN{} {}\mrightarrow{} Type
2. [\%] : \mforall{}i:\mBbbN{}. (B i)
3. \mforall{}i:\mBbbN{}. \mforall{}K:(B i) {}\mrightarrow{} \mBbbN{}. (\mexists{}Bnd:\mBbbN{} [(\mforall{}t:B i. ((K t) \mleq{} Bnd))])
4. [T] : Type
5. F : (i:\mBbbN{} {}\mrightarrow{} (B i)) {}\mrightarrow{} T
6. M : n:\mBbbN{} {}\mrightarrow{} (i:\mBbbN{}n {}\mrightarrow{} (B i)) {}\mrightarrow{} (T?)
7. [\%5] : \mforall{}f:i:\mBbbN{} {}\mrightarrow{} (B i)
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f)))
8. \mexists{}k:\mBbbN{} [(\mforall{}f:i:\mBbbN{} {}\mrightarrow{} (B i). \mexists{}n:\mBbbN{}k. (\muparrow{}isl(M n f)))]
\mvdash{} \mexists{}n:\mBbbN{}. \mforall{}f,g:i:\mBbbN{} {}\mrightarrow{} (B i). ((f = g) {}\mRightarrow{} ((F f) = (F g)))
By
Latex:
ExRepD
Home
Index