Step
*
3
of Lemma
general-uniform-continuity-from-fan
1. [B] : ℕ ⟶ Type
2. [%] : ∀i:ℕ. (B i)
3. ∀i:ℕ. ∀K:(B i) ⟶ ℕ.  (∃Bnd:ℕ [(∀t:B i. ((K t) ≤ Bnd))])
4. [T] : Type
5. F : (i:ℕ ⟶ (B i)) ⟶ T
6. M : n:ℕ ⟶ (i:ℕn ⟶ (B i)) ⟶ (T?)
7. [%5] : ∀f:i:ℕ ⟶ (B i)
            ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (T?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (T?) supposing ↑isl(M n f)))
8. n : ℕ
9. s : i:ℕn ⟶ (B i)
⊢ Dec(↑isl(M n s))
BY
{ Auto }
Latex:
Latex:
1.  [B]  :  \mBbbN{}  {}\mrightarrow{}  Type
2.  [\%]  :  \mforall{}i:\mBbbN{}.  (B  i)
3.  \mforall{}i:\mBbbN{}.  \mforall{}K:(B  i)  {}\mrightarrow{}  \mBbbN{}.    (\mexists{}Bnd:\mBbbN{}  [(\mforall{}t:B  i.  ((K  t)  \mleq{}  Bnd))])
4.  [T]  :  Type
5.  F  :  (i:\mBbbN{}  {}\mrightarrow{}  (B  i))  {}\mrightarrow{}  T
6.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (i:\mBbbN{}n  {}\mrightarrow{}  (B  i))  {}\mrightarrow{}  (T?)
7.  [\%5]  :  \mforall{}f:i:\mBbbN{}  {}\mrightarrow{}  (B  i)
                        ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)))
8.  n  :  \mBbbN{}
9.  s  :  i:\mBbbN{}n  {}\mrightarrow{}  (B  i)
\mvdash{}  Dec(\muparrow{}isl(M  n  s))
By
Latex:
Auto
Home
Index