Nuprl Lemma : select-upto

[m:ℕ]. ∀[n:ℕm].  (upto(m)[n] n)


Proof




Definitions occuring in Statement :  upto: upto(n) select: L[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  select_upto int_seg_wf nat_wf int_subtype_base
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality setElimination rename hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalIntensionalEquality applyEquality sqequalRule equalityTransitivity

Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m].    (upto(m)[n]  \msim{}  n)



Date html generated: 2016_10_21-AM-10_14_32
Last ObjectModification: 2016_07_12-AM-05_31_13

Theory : list_1


Home Index