Nuprl Lemma : select-upto
∀[m:ℕ]. ∀[n:ℕm].  (upto(m)[n] ~ n)
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
select: L[n]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
select_upto, 
int_seg_wf, 
nat_wf, 
int_subtype_base
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
sqequalIntensionalEquality, 
applyEquality, 
sqequalRule, 
equalityTransitivity
Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}m].    (upto(m)[n]  \msim{}  n)
Date html generated:
2016_10_21-AM-10_14_32
Last ObjectModification:
2016_07_12-AM-05_31_13
Theory : list_1
Home
Index