Nuprl Lemma : biject-int-nat

f:ℤ ⟶ ℕBij(ℤ;ℕ;f)


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) nat: exists: x:A. B[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  exists: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  nat: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q biject: Bij(A;B;f) inject: Inj(A;B;f) subtype_rel: A ⊆B surject: Surj(A;B;f) ge: i ≥  true: True nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  le_int_wf eqtt_to_assert assert_of_le_int decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf le_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf subtract_wf itermAdd_wf itermSubtract_wf itermMinus_wf int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_minus_lemma nat_wf int_subtype_base biject_wf nat_properties decidable__equal_int intformeq_wf int_formula_prop_eq_lemma eq_int_wf assert_of_eq_int neg_assert_of_eq_int set_subtype_base div_rem_sum nequal_wf rem_bounds_1 less_than_wf add-is-int-iff multiply-is-int-iff false_wf intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  cut natural_numberEquality hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination productElimination independent_isectElimination sqequalRule Error :dependent_set_memberEquality_alt,  dependent_functionElimination multiplyEquality approximateComputation independent_functionElimination int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  equalityTransitivity equalitySymmetry Error :equalityIsType1,  promote_hyp instantiate cumulativity addEquality minusEquality Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality intEquality applyLambdaEquality Error :equalityIsType2,  remainderEquality setElimination rename divideEquality imageMemberEquality pointwiseFunctionality imageElimination

Latex:
\mexists{}f:\mBbbZ{}  {}\mrightarrow{}  \mBbbN{}.  Bij(\mBbbZ{};\mBbbN{};f)



Date html generated: 2019_06_20-PM-01_18_59
Last ObjectModification: 2018_10_06-PM-06_09_25

Theory : int_2


Home Index