Nuprl Lemma : imax-list-nat

L:ℕ List+(imax-list(L) ∈ ℕ)


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) listp: List+ nat: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T listp: List+ uall: [x:A]. B[x] or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: false: False and: P ∧ Q cons: [a b] subtype_rel: A ⊆B uimplies: supposing a nat:
Lemmas referenced :  nat_wf list-cases product_subtype_list listp_wf imax-list-cons-is-nat subtype_rel_list
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename introduction extract_by_obid hypothesis isectElimination dependent_functionElimination hypothesisEquality unionElimination sqequalRule imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption applyEquality intEquality independent_isectElimination lambdaEquality because_Cache

Latex:
\mforall{}L:\mBbbN{}  List\msupplus{}.  (imax-list(L)  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-00_32_37
Last ObjectModification: 2018_05_19-AM-06_42_35

Theory : list_1


Home Index