Nuprl Lemma : imax-list-cons-is-nat

L:ℤ List. ∀[x:ℕ]. (imax-list([x L]) ∈ ℕ)


Proof




Definitions occuring in Statement :  imax-list: imax-list(L) cons: [a b] list: List nat: uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: uimplies: supposing a top: Top ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B and: P ∧ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: iff: ⇐⇒ Q rev_implies:  Q l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k less_than': less_than'(a;b) nat_plus: + less_than: a < b squash: T true: True guard: {T} uiff: uiff(P;Q) select: L[n] cons: [a b]
Lemmas referenced :  imax-list_wf length_of_cons_lemma non_neg_length nat_properties decidable__lt length_wf full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf imax-list-ub cons_wf le_wf nat_wf list_wf false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties add-is-int-iff intformeq_wf int_formula_prop_eq_lemma equal_wf lelt_wf decidable__le select_wf int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut dependent_set_memberEquality extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis intEquality hypothesisEquality setElimination rename natural_numberEquality addEquality unionElimination productElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion imageElimination

Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}[x:\mBbbN{}].  (imax-list([x  /  L])  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-00_32_33
Last ObjectModification: 2018_05_19-AM-06_42_36

Theory : list_1


Home Index