Nuprl Lemma : strong-continuity2-half-squash-surject-biject-ext

[T,S,U:Type].
  ((U ⊆r ℕ)
   (∃r:ℕ ⟶ U. ∀x:U. ((r x) x ∈ U))
   (∃g:ℕ ⟶ T. Surj(ℕ;T;g))
   (∃h:S ⟶ U. Bij(S;U;h))
   (∀F:(ℕ ⟶ T) ⟶ S
        ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
           ∀f:ℕ ⟶ T
             ((∃n:ℕ((M f) (inl (F f)) ∈ (S?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (S?) supposing ↑isl(M f))))))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) surject: Surj(A;B;f) quotient: x,y:A//B[x; y] int_seg: {i..j-} nat: assert: b isl: isl(x) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q true: True unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T compose: g bfalse: ff it: pi1: fst(t) strong-continuity-test: strong-continuity-test(M;n;f;b) ifthenelse: if then else fi  isl: isl(x) btrue: tt eq_int: (i =z j) subtract: m spreadn: spread3 let: let strong-continuity2-half-squash-surject-biject implies-quotient-true2 trivial-quotient-true strong-continuity2_biject_retract-ext strong-continuity2_functionality_surject strong-continuity2-half-squash implies-quotient-true strong-continuity2-iff-3 strong-continuity3_functionality_surject basic-implies-strong-continuity2-ext strong-continuity2-implies-3 surject-inverse decidable__assert strong-continuity-test-prop1 strong-continuity-test-prop2 not-isl-assert-isr any: any x bool_cases eqtt_to_assert uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] implies:  Q has-value: (a)↓
Lemmas referenced :  strong-continuity2-half-squash-surject-biject lifting-strict-decide istype-void strict4-decide lifting-strict-spread strict4-spread lifting-strict-callbyvalue lifting-strict-isint lifting-strict-int_eq has-value_wf_base is-exception_wf implies-quotient-true2 trivial-quotient-true strong-continuity2_biject_retract-ext strong-continuity2_functionality_surject strong-continuity2-half-squash implies-quotient-true strong-continuity2-iff-3 strong-continuity3_functionality_surject basic-implies-strong-continuity2-ext strong-continuity2-implies-3 surject-inverse decidable__assert strong-continuity-test-prop1 strong-continuity-test-prop2 not-isl-assert-isr bool_cases eqtt_to_assert
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination Error :inhabitedIsType,  Error :lambdaFormation_alt,  sqequalSqle divergentSqle callbyvalueDecide hypothesisEquality unionElimination sqleReflexivity Error :equalityIstype,  dependent_functionElimination independent_functionElimination decideExceptionCases axiomSqleEquality exceptionSqequal baseApply closedConclusion

Latex:
\mforall{}[T,S,U:Type].
    ((U  \msubseteq{}r  \mBbbN{})
    {}\mRightarrow{}  (\mexists{}r:\mBbbN{}  {}\mrightarrow{}  U.  \mforall{}x:U.  ((r  x)  =  x))
    {}\mRightarrow{}  (\mexists{}g:\mBbbN{}  {}\mrightarrow{}  T.  Surj(\mBbbN{};T;g))
    {}\mRightarrow{}  (\mexists{}h:S  {}\mrightarrow{}  U.  Bij(S;U;h))
    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  S
                \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (S?)
                      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
                          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                          \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))))



Date html generated: 2019_06_20-PM-02_51_25
Last ObjectModification: 2019_03_26-AM-06_46_54

Theory : continuity


Home Index