Nuprl Lemma : strong-continuity2-half-squash-surject-biject-ext
∀[T,S,U:Type].
  ((U ⊆r ℕ)
  
⇒ (∃r:ℕ ⟶ U. ∀x:U. ((r x) = x ∈ U))
  
⇒ (∃g:ℕ ⟶ T. Surj(ℕ;T;g))
  
⇒ (∃h:S ⟶ U. Bij(S;U;h))
  
⇒ (∀F:(ℕ ⟶ T) ⟶ S
        ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ T) ⟶ (S?)
           ∀f:ℕ ⟶ T
             ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (S?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (S?) supposing ↑isl(M n f))))))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
isl: isl(x)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
compose: f o g
, 
bfalse: ff
, 
it: ⋅
, 
pi1: fst(t)
, 
strong-continuity-test: strong-continuity-test(M;n;f;b)
, 
ifthenelse: if b then t else f fi 
, 
isl: isl(x)
, 
btrue: tt
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
spreadn: spread3, 
let: let, 
strong-continuity2-half-squash-surject-biject, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity2_biject_retract-ext, 
strong-continuity2_functionality_surject, 
strong-continuity2-half-squash, 
implies-quotient-true, 
strong-continuity2-iff-3, 
strong-continuity3_functionality_surject, 
basic-implies-strong-continuity2-ext, 
strong-continuity2-implies-3, 
surject-inverse, 
decidable__assert, 
strong-continuity-test-prop1, 
strong-continuity-test-prop2, 
not-isl-assert-isr, 
any: any x
, 
bool_cases, 
eqtt_to_assert, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
Lemmas referenced : 
strong-continuity2-half-squash-surject-biject, 
lifting-strict-decide, 
istype-void, 
strict4-decide, 
lifting-strict-spread, 
strict4-spread, 
lifting-strict-callbyvalue, 
lifting-strict-isint, 
lifting-strict-int_eq, 
has-value_wf_base, 
is-exception_wf, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity2_biject_retract-ext, 
strong-continuity2_functionality_surject, 
strong-continuity2-half-squash, 
implies-quotient-true, 
strong-continuity2-iff-3, 
strong-continuity3_functionality_surject, 
basic-implies-strong-continuity2-ext, 
strong-continuity2-implies-3, 
surject-inverse, 
decidable__assert, 
strong-continuity-test-prop1, 
strong-continuity-test-prop2, 
not-isl-assert-isr, 
bool_cases, 
eqtt_to_assert
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
hypothesisEquality, 
unionElimination, 
sqleReflexivity, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T,S,U:Type].
    ((U  \msubseteq{}r  \mBbbN{})
    {}\mRightarrow{}  (\mexists{}r:\mBbbN{}  {}\mrightarrow{}  U.  \mforall{}x:U.  ((r  x)  =  x))
    {}\mRightarrow{}  (\mexists{}g:\mBbbN{}  {}\mrightarrow{}  T.  Surj(\mBbbN{};T;g))
    {}\mRightarrow{}  (\mexists{}h:S  {}\mrightarrow{}  U.  Bij(S;U;h))
    {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  S
                \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  T)  {}\mrightarrow{}  (S?)
                      \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T
                          ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                          \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))))
Date html generated:
2019_06_20-PM-02_51_25
Last ObjectModification:
2019_03_26-AM-06_46_54
Theory : continuity
Home
Index