Nuprl Lemma : strong-continuity2-implies-3

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (strong-continuity2(T;F)  strong-continuity3(T;F))


Proof




Definitions occuring in Statement :  strong-continuity3: strong-continuity3(T;F) strong-continuity2: strong-continuity2(T;F) nat: uall: [x:A]. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q strong-continuity2: strong-continuity2(T;F) exists: x:A. B[x] strong-continuity3: strong-continuity3(T;F) member: t ∈ T prop: nat: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] decidable: Dec(P) or: P ∨ Q cand: c∧ B squash: T true: True guard: {T} uiff: uiff(P;Q) top: Top assert: b ifthenelse: if then else fi  bfalse: ff ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) isl: isl(x) sq_type: SQType(T) btrue: tt iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  strong-continuity2_wf nat_wf strong-continuity-test_wf int_seg_wf all_wf exists_wf equal_wf unit_wf2 subtype_rel_dep_function int_seg_subtype_nat false_wf assert_wf isl_wf decidable__assert strong-continuity-test-prop1 decidable__lt assert_functionality_wrt_uiff squash_wf true_wf isr-not-isl subtype_rel_union top_wf decidable__equal_int nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf intformless_wf int_formula_prop_less_lemma not-isl-assert-isr strong-continuity-test-prop2 and_wf btrue_wf subtype_base_sq bool_wf bool_subtype_base iff_weakening_equal strong-continuity-test-prop3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality functionExtensionality applyEquality functionEquality hypothesis universeEquality dependent_pairFormation lambdaEquality natural_numberEquality setElimination rename because_Cache sqequalRule productEquality unionEquality independent_isectElimination independent_pairFormation inlEquality dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination independent_functionElimination imageElimination imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality int_eqEquality intEquality computeAll dependent_set_memberEquality applyLambdaEquality instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (strong-continuity2(T;F)  {}\mRightarrow{}  strong-continuity3(T;F))



Date html generated: 2017_04_17-AM-09_53_55
Last ObjectModification: 2017_02_27-PM-05_49_07

Theory : continuity


Home Index