Nuprl Lemma : strong-continuity2-iff-3
∀[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (strong-continuity2(T;F) 
⇐⇒ strong-continuity3(T;F))
Proof
Definitions occuring in Statement : 
strong-continuity3: strong-continuity3(T;F)
, 
strong-continuity2: strong-continuity2(T;F)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
sq_type: SQType(T)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
strong-continuity2: strong-continuity2(T;F)
, 
strong-continuity3: strong-continuity3(T;F)
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
and_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
subtype_base_sq, 
strong-continuity3_wf, 
isect_wf, 
exists_wf, 
all_wf, 
isl_wf, 
assert_wf, 
false_wf, 
int_seg_subtype_nat, 
int_seg_wf, 
subtype_rel_dep_function, 
unit_wf2, 
equal_wf, 
nat_wf, 
strong-continuity2_wf, 
strong-continuity2-implies-3
Rules used in proof : 
applyLambdaEquality, 
dependent_set_memberEquality, 
intEquality, 
instantiate, 
universeEquality, 
inlEquality, 
productEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_isectElimination, 
rename, 
setElimination, 
natural_numberEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
unionEquality, 
dependent_functionElimination, 
dependent_pairFormation, 
productElimination, 
functionEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (strong-continuity2(T;F)  \mLeftarrow{}{}\mRightarrow{}  strong-continuity3(T;F))
Date html generated:
2017_09_29-PM-06_05_14
Last ObjectModification:
2017_09_04-PM-00_14_51
Theory : continuity
Home
Index