Nuprl Lemma : strong-continuity3_functionality_surject

[T,S:Type].
  ∀g:T ⟶ S. (Surj(T;S;g)  (∀F:(ℕ ⟶ S) ⟶ ℕ(strong-continuity3(T;λf.(F (g f)))  strong-continuity3(S;F))))


Proof




Definitions occuring in Statement :  strong-continuity3: strong-continuity3(T;F) surject: Surj(A;B;f) compose: g nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  compose: g rev_implies:  Q guard: {T} true: True squash: T cand: c∧ B not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2x.t[x] prop: nat: and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T exists: x:A. B[x] strong-continuity3: strong-continuity3(T;F) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  iff_weakening_equal true_wf squash_wf surject_wf strong-continuity3_wf isl_wf assert_wf false_wf int_seg_subtype_nat subtype_rel_dep_function unit_wf2 equal_wf exists_wf all_wf int_seg_wf compose_wf nat_wf surject-inverse
Rules used in proof :  baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination universeEquality inlEquality independent_pairFormation independent_isectElimination unionEquality productEquality functionEquality because_Cache cumulativity setElimination natural_numberEquality functionExtensionality applyEquality lambdaEquality dependent_pairFormation rename hypothesis independent_functionElimination dependent_functionElimination hypothesisEquality isectElimination extract_by_obid introduction cut sqequalRule thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T,S:Type].
    \mforall{}g:T  {}\mrightarrow{}  S
        (Surj(T;S;g)
        {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.  (strong-continuity3(T;\mlambda{}f.(F  (g  o  f)))  {}\mRightarrow{}  strong-continuity3(S;F))))



Date html generated: 2017_09_29-PM-06_05_10
Last ObjectModification: 2017_09_04-PM-00_14_58

Theory : continuity


Home Index