Nuprl Lemma : strong-continuity3_functionality_surject
∀[T,S:Type].
  ∀g:T ⟶ S. (Surj(T;S;g) 
⇒ (∀F:(ℕ ⟶ S) ⟶ ℕ. (strong-continuity3(T;λf.(F (g o f))) 
⇒ strong-continuity3(S;F))))
Proof
Definitions occuring in Statement : 
strong-continuity3: strong-continuity3(T;F)
, 
surject: Surj(A;B;f)
, 
compose: f o g
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
compose: f o g
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
nat: ℕ
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
strong-continuity3: strong-continuity3(T;F)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
iff_weakening_equal, 
true_wf, 
squash_wf, 
surject_wf, 
strong-continuity3_wf, 
isl_wf, 
assert_wf, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
unit_wf2, 
equal_wf, 
exists_wf, 
all_wf, 
int_seg_wf, 
compose_wf, 
nat_wf, 
surject-inverse
Rules used in proof : 
baseClosed, 
imageMemberEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
universeEquality, 
inlEquality, 
independent_pairFormation, 
independent_isectElimination, 
unionEquality, 
productEquality, 
functionEquality, 
because_Cache, 
cumulativity, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
dependent_pairFormation, 
rename, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T,S:Type].
    \mforall{}g:T  {}\mrightarrow{}  S
        (Surj(T;S;g)
        {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  S)  {}\mrightarrow{}  \mBbbN{}.  (strong-continuity3(T;\mlambda{}f.(F  (g  o  f)))  {}\mRightarrow{}  strong-continuity3(S;F))))
Date html generated:
2017_09_29-PM-06_05_10
Last ObjectModification:
2017_09_04-PM-00_14_58
Theory : continuity
Home
Index