Nuprl Lemma : surject-inverse

[A,B:Type].  ∀f:A ⟶ B. (Surj(A;B;f) ⇐⇒ ∃g:B ⟶ A. ∀x:B. ((f (g x)) x ∈ B))


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] surject: Surj(A;B;f) exists: x:A. B[x] pi1: fst(t) squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T}
Lemmas referenced :  surject_wf exists_wf all_wf equal_wf pi1_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis functionEquality sqequalRule lambdaEquality universeEquality rename dependent_pairFormation productElimination dependent_pairEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (Surj(A;B;f)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}g:B  {}\mrightarrow{}  A.  \mforall{}x:B.  ((f  (g  x))  =  x))



Date html generated: 2017_04_17-AM-07_46_11
Last ObjectModification: 2017_02_27-PM-04_17_51

Theory : list_1


Home Index